• 제목/요약/키워드: Delamination strength

검색결과 278건 처리시간 0.02초

Progress in R&D of coated conductor in M-PACC project

  • Izumi, T.;Ibi, A.;Nakaoka, K.;Taneda, T.;Yoshida, T.;Takagi, Y.;Nakamura, T.;Machi, T.;Katayama, K.;Sakai, N.;Yoshizumi, M.;Koizumi, T.;Kimura, K.;Kato, T.;Kiss, T.;Shiohara, Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2014
  • The five-year national project in Japan for R&D of coated conductors and applications, named as the Materials and Power Applications of Coated Conductors (M-PACC) project, was finished at the end of FY2013. The project consists of four sub-themes as cable, transformer, SMES and coated conductors. In the theme of coated conductors, the fabrication process had been developed to satisfy the requirements from the applications such as in-field $I_c$ performance, low AC loss in the long tapes etc. Through the project, the remarkable progress was achieved as follows; a high in-field minimum $I_c$ value over 54A/cm-width under 3T at 77K was realized in a 200m long EuBCO tape with artificial pinning centers of $BaHfO_3$ by the pulsed laser deposition (PLD) technique on the IBAD template. On the other hand, the AC loss reduction was confirmed in the tapes fabricated by both PLD and the metal organic deposition (MOD) techniques by scribing 100m tapes into 10-filamments. Additionally, the mechanism of the delamination phenomenon was systematically investigated and the strength was improved by eliminating the origins of the weak points in the films. Through the development, all targeted goals were accomplished and the several results were appreciated as a world champion data.

신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정 (Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages)

  • 박동현;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.111-118
    • /
    • 2018
  • 강성도가 서로 다른 두 polydimethylsiloxane (PDMS) 탄성고분자와 flexible printed circuit board (FPCB)로 이루어진 soft PDMS/hard PDMS/FPCB 구조의 강성도 국부변환 신축기판을 개발하기 위해 PDMS와 FPCB를 acrylic-silicone 양면테이프를 사용하여 접합한 후 접합공정에 따른 PDMS/FPCB 계면접착력을 분석하였다. 완전 경화된 PDMS에 acrylic-silicone 양면테이프의 silicone 접착제로 접착한 FPCB의 pull 강도는 259 kPa이었으며, pull 시험시 PDMS와 silicone 접착제 사이에서 박리가 발생하였다. 반면에 $60^{\circ}C$에서 15~20분 유지하여 반경화시킨 PDMS에 acrylic-silicone 양면테이프의 silicone 접착제로 FPCB를 접착 후 $60^{\circ}C$에서 12시간 유지하여 PDMS를 완전 경화시키면 pull 강도가 1,007~1,094 kPa로 크게 향상되었으며, pull 시험시 계면 박리가 acrylic-silicone 양면테이프의 acrylic 접착제와 FPCB 사이에서 발생하였다.

라디에타소나무 단판적층재의 밀도·접착·강도성능 및 내부후성 (Density, Bonding Strength, Bending strength and Decay Resistance of Radiata Pine Laminated Veneer Lumber)

  • 서진석;이동흡;황원중;오형민;박영란;강승모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권4호
    • /
    • pp.344-350
    • /
    • 2011
  • 라디에타소나무 단판적층재(LVL)를 제조함에 있어서, CuAz 및 ACQ 방부처리와 비처리, 수성비닐우레탄 접착제와 페놀변성 리조시놀수지 접착제의 상온경화형 접착제를 적용함에 따른 밀도경사, 접착 강도성능 및 내부후성(방부효력)을 살펴보았다. 결과, LVL의 밀도경사에서 접착층 주변이 원추형으로 밀도가 커지는 경사패턴을 보였다. 접착성은 수성비닐우레탄 접착의 경우, 자비반복시험 후 전층이 박리되거나, 일부 층이 박리하고 할렬 틈새 현상이 일어났다. 페놀변성 리조시놀수지 접착제 접착의 경우, 자비반복시험 후 접착층의 응력이 큰데 연유한 굽음과 상하 접착층 사이의 단판의 수직할렬 현상이 있었으나, 접착층의 박리나 할렬이 거의 발견되지 않아 침지박리접착력은 높은 것으로 판단되었다. 한편, 방부효력시험에 있어서, 수성비닐우레탄 접착제로 적층한 LVL의 경우 갈색부후균에 의한 부후도가 백색부후균보다 크게 나타났다. 페놀변성 리조시놀수지 접착제로 LVL을 제조한 경우에는 갈색부후균에 의한 질량감소가 적었고, 약제를 처리하지 않더라도 그 피해가 낮았으며, 약제처리한 것은 질량감소율 0 수준을 보일 정도로 방부효력이 큰 것을 알 수 있었다.

탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성 (Fracture Toughness and AE Behavior of Impact-Damaged CFRP)

  • 이상국;남기우;오세규
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 1997
  • 탄소섬유강화복합재료(CFRP) 적층판에 비교적 낮은 에너지의 충격을 주어, 충격에 의해서 손상된 적층판을 사용하여 인장강도, 파괴 인성 및 AE 신호 특성에 미치는 충격 손상의 영향에 대하여 검토하였다. 충격손상재의 인장강도, 파괴 인성 및 AE-event count는 충격 속도와 박리 면적의 증가에 따라서 감소함을 알 수 있었다. 그리고 충격시험시에 발생한 박리 면적은 충격 속도와 비례하였다. 또한 적층 방법에 따른 손상재의 강도비와 파괴 인성비가 달라짐이 확인되어 복합재료의 내충격 설계시 손상량과 손상재의 파괴 인성 및 강도에 대한 정량적 평가를 AE 신호로부터 해석할 수 있음이 확인되었다.

  • PDF

Effect of the Hole on the Tensile Fatigue Properties of CFRP Laminates

  • Lee, Yeon-Soo;Ben, Goichi;Lee, Se-Hwan
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.43-59
    • /
    • 2009
  • The current study assessed the effect of a bolt hole on tensile fatigue properties of CFRP laminates. Two specimens, i.e. $[(0/90)_3]S$, $[(0/45/90/-45)_2]_S$, were analyzed using a finite element method and were experimentally tested for cases, both with and without a hole, whose diameter corresponded to 0.12 times the specimen width. Delamination positions predicted by a 3-dimensional static finite element analysis were matched well to those observed by an ultrasonic imaging system in the middle of fatigue test. A hole whose diameter corresponds to 0.12 times the specimen width caused the fatigue strength to decrease by 9% and 11% under 5 Hz loading frequency, and by 22% and 25% under 10 Hz loading frequency for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively. Because the decrease in sectional area due to the hole was normalized in calculation of the tensile strength, a stress concentration around the hole is believed to induce the strength degradation of fatigue specimens. From the finite element analyses, the stress concentration factor around a hole was expected as 8.8 and 9.5 for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively.

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가 (Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating)

  • 김대진;이동훈;구재민;송성진;석창성;김문영
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

A Study on the Eutectic Pb/Sn Solder Filip Chip Bump and Its Under Bump metallurgy(UBM)

  • Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제5권1호
    • /
    • pp.7-18
    • /
    • 1998
  • In the flip chip interconnection on organic substrates using eutectic Pb/Sn solder bumps highly reliable Under Bump Metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1$\mu$m Al/0.2$\mu$m Pd/1$\mu$m Cu, laid under eutectic Pb/Sn solder were investigated with regard to their interfacial reactions and adhesion proper-ties. The effects of numbers of solder reflow and aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1$\mu$m Al/0.2$\mu$m Ti/5$\mu$m Cu and 1$\mu$m Al/0.2$\mu$m ni/1$\mu$m Cu even after 4 solder reflows or 7 day aging at 15$0^{\circ}C$. In contrast 1$\mu$m Al/0.2$\mu$m Ti/1$\mu$m Cu and 1$\mu$mAl/0.2$\mu$m Pd/1$\mu$m 쳐 show poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and nonwettable metal such as Ti and Al resulting in a delamination. In this case thin 1$\mu$m Cu and 0.2$\mu$m Pd diffusion barrier layer were completely consumed by Cu-Sn and pd-Sn reaction.

피로누적손상을 이용한 직조 CFRP의 피로수명 예측 (Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model)

  • 장재욱;조제형;오동진;김명현
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

저속 충격을 받는 Glass/phenol 복합적층재의 손상 해석 (A Damage Analysis of Glass/phenol Laminated Composite Subjected to Low Velocity Impact)

  • 나재연;이영신;김재훈;조정미;박병준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.89-92
    • /
    • 2002
  • Traditionally unidirectional laminated composite which are characterized by high specific stiffness and strength were used for structural application. But theses composites are highly susceptible to impact damage because of lower transverse tensile strength. The main failure modes of laminated composite are fiber breakage, matrix cracking and delamination for low velocity impact. The modified failure criterions are implemented to predict these failure modes with finite element analysis. Failure behavior of the woven fabric laminated composite which is used in forehead part of subway to lighten weigh has been studied. The new failure criterions are in good agreement with experimental results and can predict the failure behavior of the woven fabric composite plate subjected to low velocity impact more accurately.

  • PDF