• Title/Summary/Keyword: Degussa P25

Search Result 55, Processing Time 0.026 seconds

Preparation of the Titanium Dioxide-Phosphor Composite and its Photocatalytic Reaction under Visible Light (이산화티타늄-발광체 복합소재 제조 및 가시광선 광촉매 반응)

  • Park, Jin-Woo;Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.688-693
    • /
    • 2008
  • This paper presents a study on the photocatalytic reaction about the composite particles of $TiO_2$-coated phosphors under visible light irradiation. Nanocrystalline titanium dioxide layers were directly coated on the alkaline earth aluminate phosphor, $CaAl_2O_4:Eu^{2+},\;Nd^{3+}$ particles by an sol-gel processing method. The photocatalytic reaction was analyzed with the degradation of methylene blue (MB) aqueous solution under UV and visible light irradiations. $TiO_2$-coated phosphor powders showed different photocatalytic mechanism, compared with pure $TiO_2$ (P-25, Degussa). Under UV-irradiation, $TiO_2$-coated phosphor powders showed slow photocatalytic reactivity in the early stage and fast in the latter, compared with that of pure $TiO_2$. However, $TiO_2$-coated phosphor powders showed much faster photocatalytic reactivity than that of pure $TiO_2$ under visible irradiation. In addition, the characterizations of the $TiO_2$-coated phosphor powders were conducted by a X-ray diffractometer (XRD), transmission electron microscope (TEM), and energy dispersive spectroscopy (EDS).

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Park, Dong-Won;Kim, Sun-Il;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.172-176
    • /
    • 2009
  • The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

High Photocatalytic Activity of Gd2O2S:Tb Modified Titanium Dioxide Films

  • Kim, Bum-Goo;Lee, Hak-Guen;Kim, Hee-Sung;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.675-678
    • /
    • 2009
  • $Fe_2O_3,\;Ag_2O,\;CaWO_4$ and $Gd_2O_2S$:Tb loaded on titanium dioxide photocatalysts (P25, Degussa) were prepared by a calcination. Their composite films containing water-born polyurethane used as a material for immobilization were obtained by spray coating technique. The photocatalytic activity of the titanium dioxide films was characterized by decrease of UV-vis absorption spectra for methylene blue and gas chromatography for photocatalytic decomposition of formaldehyde diluted in water. It was shown that the $Gd_2O_2S$:Tb modified titanium dioxide films had good photocatalytic properties and followed the first-order kinetic model with regard to photocatalytic decoloration of methylene blue. Especially in formaldehyde photodegradation experiment, decrease rate of concentration of the titanium dioxide films with $Gd_2O_2S$:Tb modifying was about 35% larger than that of the unloaded titanium dioxide film.

Developing a Testing Method for Antimicrobial Efficacy on TiO2 Photocatalytic Products

  • Kim, Jee-Yeon;Park, Chang-Hun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • $TiO_2$ photocatalyst has been known to exhibit a notable disinfecting activity against a broad spectrum of microorganisms. A lot of commercial $TiO_2$ photocatalyst products have been developed for antimicrobial purposes. However, a standard method has not yet been proposed for use in testing antimicrobial activity. In this study, we developed a $TiO_2$ photocatalytic adhesion test method with film as the standard testing method for the evaluation of antimicrobial activity. This method was devised by modifying the previous antimicrobial products test method, which has been widely used, and considering the characteristics of $TiO_2$ photocatalytic reaction. The apparatus for testing the antimicrobial activity was composed of a Black Light Blue (BLB) lamp as UV-A light source, a Petri dish as the cover material, and a polypropylene film as the adhesion film. The standard $TiO_2$ photocatalyst sample, Degussa P25 $TiO_2$ - coated glass, could only be used once. The optimal initial concentration of the microorganism, proper light intensity, and light irradiation time were determined to be $10^6$ CFU/mL, 1.0 mW/$cm^2$, and 3 hr, respectively, for testing and evaluating antimicrobial activity on the $TiO_2$ surface.

Change in the photocatalytic activity of $TiO_2$ depending on the surface structure

  • Tai, Wei Sheng;Luo, Yuan;Kim, Myoung-Joo;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.348-348
    • /
    • 2010
  • Behaviors of $TiO_2$-based photocatalysts with different surface structures on the removal of gas-phase toluene with and without UV irradiation are reported. P-25(Degussa) $TiO_2$ powder dispersed in distilled water by sonication was deposited on the transparent glasses and then dried. Some of the samples were further annealed in oven for 1 hr. These samples obtained before and after annealing were characterized by Brunauer- Emmett-Teller (BET), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared (FT-IR) spectrometry, respectively. Based on BET and TEM data, no significant structural change upon annealing could be identified. However, the sample without annealing showed a significantly higher ability for removing toluene both in the presence and absence of the UV light. XPS and FT-IR results clearly revealed that the population of the OH groups on the surface of $TiO_2$ was higher for the sample without annealing, indicating that the OH groups can enhance the adsorption capacity and photocatalytic activity of $TiO_2$ for the removal of the gas-phase toluene.

  • PDF

Photocatalytic Treatment of Cyanide in Water (광촉매 반응에 의한 물 속 시안이온의 처리)

  • Yeo, Seung-Wook;Kim, Jae-Hyun;Lee, Ho-In
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.64-68
    • /
    • 2002
  • Photocatalytic treatment of aqueous cyanide was studied using both commercial and home-made $TiO_2$'s as catalysts. Among the catalysts, $TiO_2$ made from $Ti(OC_3H_7)_4$ as a precursor showed the highest activity for the degradation of cyanide exceeding a commercial catalyst of Degussa P25. The difference in activities of the catalysts was mainly related to the surface properties of the catalysts such as the ratio of acidic to basic hydroxyl groups. For the catalyst which showed the highest activity, partially reduced $TiO_2$ showed better activity than calcined one.

PHOTOCATALYTIC SYNTHESIS OF L-PIPECOLINIC ACID FROM $N_{varepsilon}$-CARBAMYL-L-LYSINE BY AQUEOUS SUSPENSION OF PLATINIZED TITANIUM(IV) OXIDE

  • Ohtani, Bunsho;Aoki, Eishiro;Iwai, Kunihiro;Nishimoto, Sei-Ichi
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • Photoirradiation at > 300 nm onto a suspension of platinized TiO$_2$ (TiO$_2$-Pt) particles in an aqueous solution. of N$_{\varepsilon}$-carbamyI-L-lysine (Lys(CONH)$_2$) induced the selective N-cyclization of Lys(CONH$_2$) into almost optically pure L-pipecolinic acid (PCA) under argon atmosphere at ambient temperature. Among various TiO$_2$-Pt catalysts, a P-25 (Degussa) powder platinized via impregnation from chloroplatinic acid followed by hydrogen reduction at 753 K exhibited the highest photocatalytic activity for Lys(CONH$_2$) consumption and L-PCA production. GC-MS analyses of L-PCA obtained photocatalytically from $^{15}$N$\alpha$-Lys(CONH$_2$) revealed the selective formation $^{15}$N-substituted L-PCA. This implies that the mechanism for L-PCA production contains selective cleavage of C$_{\varepsilon}$-N bond and intramolecular alkylation at $\alpha$-amino group. Effect of pH on the rate of this photocatalytic reaction was investigated in detail and compared with the pH-dependent charge distribution in Lys(CONH$_2$) molecule. It is clarified that protonation-deprotonation of $\alpha$-amino group gives marked influence on the rate and selectivity of the photocatalytic reaction. On the basis of these results, it is concluded that the selective production of optically pure L-PCA, especially in an acidic suspension of TiO$_2$-Pt, was attributed to the enhanced protonation of $\alpha$-amino group to prevent undesirable oxidation by photogenerated positive holes and blocking of $\varepsilon$-amino group to yield racemic Schiff base intermediate.

  • PDF

A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts

  • Khan, Romana;Kim, Sun-Woo;Kim, Tae-Jeong;Lee, Hyo-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1951-1957
    • /
    • 2007
  • A new synthetic strategy based on the acid-base catalyzed sol-gel method was developed for the preparation of a series of mesoporous TiO2 nanoparticles. A key feature of the method involves a gradual change in pH (0.8- 9) during the sol-gel transition, which guarantees easy introduction of mesoporosity without relying on the well-established sonochemical or template approach. In addition, this method leads to the exclusive formation of the anatase phase stable enough to the calcination temperature up to 600 oC. The physicochemical properties of the particles in the series were characterized by various spectroscopic and analytical techniques such as wide-angle XRD, SAXRD, BET surface area, FE-SEM, TEM, FT-IR, TGA, and XPS. The photocatalytic efficiency of these materials was investigated for the oxidation of toluene under UV-irradiation. All but T-ad in the series exhibited high photocatalytic activity pushing the reaction into completion within 3 h. The reaction followed the first order kinetics, and the rate reaches as high as 3.9 × 10?2/min which exceeds the one with the commercially available Degussa P-25 by a factor of 3.2. When comparison is made among the catalysts, the reactivity increases with increase in the calcination temperature which in turn increases the crystallinity of the anatase phase, thus revealing the following rate orders: T-3 < T-4 < T-5 < T-6.

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.