References
- Hoffman, M. R., Martin, S. T., Choi, W., and Behnemann, D. W., "Environmental applications of semiconductor photocatalysis," Chem. Rev., 95, 69-96 (1995) https://doi.org/10.1021/cr00033a004
- Mills, A., and Hunte, S. L., "An overview of semiconductor photocatalysis," J. Photochem. Photobiol. A: Chem., 108, 1-35 (1997) https://doi.org/10.1016/S1010-6030(97)00118-4
- Fujishima, A., Rao, T. N., and Tryk, D. A., "Titanium dioxide photocatalysis," J. Photochem. Photobiol. C: Photochem. Rev., 1, 1-21 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
- Matsunaga, T., Tomoda, R., Nakajima, T., and Wake, H., "Photoelectrochemical sterilization of microbial cells by semiconductor powders," FEMS. Microbiol. Lett., 29, 211-214 (1985) https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
- Ireland, J. C., Klostermann, P., Rice, E. W., and Clark, R. M., "Inactivation of Escherichia coli by Titanium Dioxide Photocatalytic Oxidation," Appl. Environ. Microbiol., 59(5), 1668-1670 (1993)
-
Matsunaga, T., and Okochi, M., "
$TiO_2$ - mediated photochemical disinfection of Escherichia coli using optical fibers," Environ. Sci. Technol., 29, 501-505 (1995) https://doi.org/10.1021/es00002a028 -
Maness, P., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., and Jacoby, W. A., "Bactericidal activity of photocatalytic
$TiO_2$ reaction: toward an understanding of its killing mechanism," Appl. Environ. Microbiol., 65(9), 4094-4098 (1999) - Watts, R. J., Kong, S., Orr, M. P., Miller, G. C., and Henry, B. E., "Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent," Water Res., 29(1), 95-100 (1995) https://doi.org/10.1016/0043-1354(94)E0122-M
-
Sunada, K., Kikuchi, Y., Hashimoto, K., and Fujishima, A., "Bactericidal and detoxification effects of
$TiO_2$ thin film photocatalysts," Environ. Sci. Technol., 32(5), 726-728 (1998) https://doi.org/10.1021/es970860o -
Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., and Fujishima, A., "Photocatalytic bactericidal effect of
$TiO_2$ thin films: dynamic view of the active oxygen species responsible for the effect," J. Photochem. Photobiol. A: Chem., 106, 51-56 (1997) https://doi.org/10.1016/S1010-6030(97)00038-5 -
Amezaga-Madrid, P., Nevárez-Moorillón, G. V., Orrantia- Borunda, E., and Miki-Yoshida, M., "Photoinduced bactericidal activity against Pseudomonas aeruginosa by
$TiO_2$ based thin film," FEMS. Microbiol. Lett., 211, 183-188 (2002) https://doi.org/10.1111/j.1574-6968.2002.tb11222.x -
Yao, K. S., Wang, D. Y., Ho, W. Y., Yan, J. J., and Tzeng, K. C., "Photocatalytic bactericidal effect of
$TiO_2$ thin film on plant pathogens," Surf. Coat. Technol., 201, 6886-6888 (2007) https://doi.org/10.1016/j.surfcoat.2006.09.068 -
Sokmen, M., Candan, F., and Sümer, Z., "Disinfection of E. coli by the
$Ag-TiO_2/UV$ system: lipidperoxidation," J. Photochem. Photobiol. A: Chem., 143, 241-244 (2001) https://doi.org/10.1016/S1010-6030(01)00497-X -
Sunada, K., Watanabe, T., and Hashimoto, K., "Bactericidal activity of copper-deposited
$TiO_2$ thin film under weak UV light illumination," Environ. Sci. Technol., 37, 4785-4789 (2003) https://doi.org/10.1021/es034106g - Park, C., and Yoon, J., "The present condition of research for standardization to test antimicrobial activity," The Monthly Magazine for Ceramics, 7, 83-86 (2005)
- "Antimicrobial products test for antimicrobial activity and efficacy," JIS (Japanese Industrial Standard) Z 2801, (2000)
- Mills, A., Elliott, N., Hill, G., Fallis, D., Durrant, J. R., and Wills, R. L., "Preparation and characterisation of novel thick sol-gel titania film photocatalysts," Photochem. Photobiol., 2, 591-596 (2003) https://doi.org/10.1039/b212865a
-
Kim, H., and Choi, W., "Effects of surface fluorination of
$TiO_2$ on photocatalytic oxidation of gaseous acetaldehyde," Appl. Catal. B-Environ., 69, 127-132 (2006) https://doi.org/10.1016/j.apcatb.2006.06.011 -
Cho, M., Chung, H., Choi, W., and Yoon, J., "Linear correlation between inactivation of E. coli and OH radical concentration in
$TiO_2$ photocatalytic disinfection," Water Res., 38, 1069-1077 (2004) https://doi.org/10.1016/j.watres.2003.10.029 -
Cho, M., Chung, H., Choi, W., and Yoon, J., "Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in
$TiO_2$ Photocatalytic Disinfection," Appl. Environ. Microbiol., 71, 270-275 (2005) https://doi.org/10.1128/AEM.71.1.270-275.2005 - Thurman, R. B., and Gerba, C. P., "The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses," CRC. Rev. Environ. Contr., 18, 295-315 (1989) https://doi.org/10.1080/10643388909388351
- "Testing for antibacterial activity and efficacy on textile products," JIS (Japanese Industrial Standard) L 1902, (2002)
Cited by
- Photocatalytic Activity of Reactively Sputtered Titania Coatings Deposited Using a Full Face Erosion Magnetron vol.3, pp.4, 2013, https://doi.org/10.3390/coatings3040177
- Layer Prepared by Electrostatic Spraying for Sterilization vol.8, pp.5, 2013, https://doi.org/10.5370/JEET.2013.8.5.1169
- Methodologies for the analysis of antimicrobial effects of immobilized photocatalytic materials vol.98, pp.5, 2014, https://doi.org/10.1007/s00253-013-5464-y
- Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism vol.7, pp.3, 2015, https://doi.org/10.1007/s40820-015-0040-x
- Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety-Opportunities and Challenges vol.16, pp.4, 2017, https://doi.org/10.1111/1541-4337.12267
- Photocatalytic Nanocomposite Films Fabricated by Layer‐by‐Layer Self‐assembly of TiO2 Nanoparticles and Lignosulfonates vol.30, pp.7, 2008, https://doi.org/10.1002/cjoc.201100488
- Antimicrobial potential of TiO2nanoparticles against MDRPseudomonas aeruginosa vol.10, pp.11, 2008, https://doi.org/10.1080/17458080.2014.902544
- The Fabrication of Titanium Dioxide (TiO2) Thin Film via Deposited Spray Pyrolysis Using for Antibacterial Applications vol.804, pp.None, 2008, https://doi.org/10.4028/www.scientific.net/amm.804.183