• Title/Summary/Keyword: Degree of hardening

Search Result 104, Processing Time 0.019 seconds

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

Hardening Properties of Hardener-Free Epoxy-Modified Mortars by Curing Conditions (양생조건에 따른 경화제 무첨가 에폭시수지 혼입 PMM의 경화특성)

  • Lee, Jae-Hwa;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.255-257
    • /
    • 2012
  • Epoxy resin without any hardener can harden in the presence of hydroxide ions in cement mortars and concretes at ambient temperature. The purpose of present study is to examine the hardening properties of hardener-free epoxy-modified mortars by curing conditions. The hardener-free epoxy-modified mortars using diglycidyl ether of A epoxy resin are prepared with various polymer-cement ratios, and subjected to initial moist/dry curing, initial steam(90℃) curing, initial steam/heat(80℃, 100℃) curing.As a result, degree of hardening of epoxy resin in initial moist/dry cured, initial steam cured and initial steam/heat(80℃) cured hardener-free epoxy-modified mortars is decreased with increasing polymer-cement ratio. However, it is markedly improved with additional dry-curing periods. On the other hand, regardless of the polymer-cement ratio and dry curing periods, degree of hardening of hardener-free epoxy-modified mortars with initial steam/heat(100℃) cure is over 95%.

  • PDF

Transformation Hardening of High Power Laser (고출력 레이저에 의한 표면 경화)

  • Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 1995
  • Heat flow equation and FEM have been used to calculate the hardening section of material in laser transformation hardening. SCM440 used as the diesel engine piston of vessel has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. The specimens were inclined from 0 to 70 degree to investigate the characteristics of laser hardening. The geometrical factor of heat flow equation affects the size of hardening area. The case width decreased with increasing travel speed and the case width increased with increasing inclined angle. Maximum case depth was achieved about 1.0mm and maximum hardness of laser hardened area was of 2.8 times than that of base metal. Experimental data show good agreement with the theoretical calculations for given laser hardening conditions.

  • PDF

A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen (수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동)

  • Kang, Kae-Myung;Park, Jae-Woo;Choi, Jong-Un
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.

The Effect of Ausforming Process on Mechanical Properties of Ultrahigh Strength Secondary Hardening Martensitic Steels (극초고강도 이차경화형 마르텐사이트강의 기계적성질에 미치는 오스포밍 공정의 영향)

  • Kim, S.B.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Two types of secondary hardening martensitic steels, 10Co-14Ni and 6Co-5Ni, were produced by vacuum induction melting to investigate the effect of ausforming process on mechanical properties. According to the results of present study, the alloy samples ausformed at low temperature indicated a rather low hardness level in overall aging time despite the refinement of martensite lath width. As the result can closely be related with the presence of primary carbides precipitated within the initial austenite matrix, we confirmed that, in ultrahigh strength secondary hardening martensitic alloy steels, the ausforming process can rather limit the degree of secondary hardening during the subsequent aging treatment.

Softening and hardening tuned mass dampers

  • Khalili, Mohammad Khalil;Badamchi, Karim
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.459-465
    • /
    • 2018
  • Reducing response of buildings during earthquakes by mass dampers, has been examined in many articles and books. Nowadays, many researchers are trying to realistically examine this type of dampers by new methods of performance. In this paper, for the better study of tuned mass damper (TMD), two schematic models are presented for a passive TMD with softening stiffness (softening TMD) and a passive TMD with hardening stiffness (hardening TMD). Then by modeling and analysis of the damper on a single degree of freedom (SDOF) structure and an 11-story steel building, the dampers performance was evaluated. State space was used for damper and structure modeling and to solve nonlinear equations, the Newton-Raphson method was used. The results show that when the structure is subjected to the Chi-Chi earthquake, response of the sixth floor in the system without TMD reduces 54.0% in comparison to the structure with softening TMD. This percentage of reduction for hardening TMD is 55.0%. Also for the Tabas earthquake, reduction in the RMS acceleration of the sixth floor in the system with hardening TMD is 96.2% more than the structure without TMD. This percentage of reduction for hardening TMD is 96.3%.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

Sowing Method and Flooding Time at Furrow Sowing Culture of Rice in Paddy Field (벼 무논 골 뿌림재배 파종방법 및 담수시기)

  • 송영주;권석주;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.205-210
    • /
    • 1994
  • This experiment was conducted to investigate of soil hardening degree before sowing, furrow depth at sowing and flooding time after sowing at furrowing in flooded rice paddy field that many people have an interest in as direct sowing method most recently. As hardening period was increased, the percentage of seedling stand and seed floating at flooding were increased slightly, while buried depth of stem at maximum tillering stage and cone penetration depth were decreased, respectively. Therefore, optimum degree of soil hardening was about 3 days after draining, at this time, cone penetration degree was about 6~7cm. According to furrow depth was more and more deep, buried depth of stem was increased gradually, but percentage of seedling stand was decreased considerbly. Also, root distribution ratio on surpace horizon and lodging degree were increased gradually according to furrow depth become more and more shallow. As flooding time after sowing was late, percentage of seedling stand and panicle number per $m^2$ were decreased slightly. These results apparently indicated that sowing after 3 days hardening when cone penetration degree was 6~7cm, furrow depth 3~4cm degree and flooding time just after sowing the best method to good establish of seedling stand.

  • PDF

Long-term Strength Improvement of Epoxy-Modified Mortars with Steam Curing (증기양생에 의한 에폭시수지 혼입 PMM의 장기강도 발현)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.263-264
    • /
    • 2012
  • The purpose of present study is to examine the long-term strength improvement of hardener-free epoxy-modified mortars with steam curing. As a result, strength improvement of hardener-free epoxy-modified mortars is markedly improved with increasing of air-dry curing period. This is improved by markedly increase the degree of hardening of the hardener-free epoxy resin in the epoxy-modified mortars with additional air-dry curing period.

  • PDF