• 제목/요약/키워드: Degrading System

검색결과 259건 처리시간 0.022초

광촉매 시스템을 이용한 $TiO_2$ 코팅비드의 광분해 활성 (Photoactivity of $TiO_2$-coated Bead for Organic Contaminants in Photocatalytic System)

  • 박성애;도영웅;하진욱
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1579-1582
    • /
    • 2007
  • 본 연구는 광촉매를 이용, 수용액내 유기오염물질 분해 성능을 비교하여 난분해성 오염물질을 분해하는 최적의 조건을 찾는 것으로 반응기 내부의 광원의 파장에 따른 세기와 광촉매 물질의 상태에 따라 고찰하였다. 그 결과, $500^{\circ}C$에서 30동안 소성한 실리카 비드가 가장 뛰어난 반응성을 나타냄을 알 수 있었다.

  • PDF

고효율 플라이백 컨버터를 위한 새로운 에너지 회복회로 (Novel Energy Recovery Circuit for High Efficiency Flyback Converter)

  • 정용채
    • 전력전자학회논문지
    • /
    • 제11권6호
    • /
    • pp.529-534
    • /
    • 2006
  • 요즘 많은 연구자들이 전력변환회로의 효율을 올리는데 이전보다 훨씬 많은 관심을 기울이고 있다. 플라이백 컨버터에서 RCD 스너버의 저항은 누설인덕터에 저장된 에너지를 소모한다. 이는 전체 시스템 효율을 감소시키는 역할을 한다. 그래서 이 논문에서는 효율을 향상시키기 위해서 플라이백 컨버터의 새로운 에너지 회복회로를 제안한다. 제안된 회로의 동작원리를 자세히 설명한다. 그리고 이를 모의실험 및 실험을 통해서 확인한다.

수정된 FXLMS 알고리듬을 이용한 능동소음제어 시스템 2차 경로 비선형 특성 적응보상 기법 (Nonlinear Compensation of A Secondary Path in Active Noise Control Using A Modified Filtered-X LMS Algorithm)

  • 정인석;안규영;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.22-25
    • /
    • 2004
  • In active noise control (ANC) system, the convergence behavior of the Filtered- X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortion in the secondary path as in the power amplifiers (e.g., saturation), loudspeakers and transducers. This distortion may yields degrading the error reduction performance of the ANC systems. In this paper, the authors of this paper propose a more improved and stable FXLMS algorithm to compensate for the undesirable nonlinearity of the secondary-path, whereby the third-order Volterra model was employed for the identification of the nonlinear secondary-path. In particular, the proposed approach was based on the modification of the conventional FXLMS algorithm. Finally, the simulation results showed that the proposed approach yields better convergence property and more stable performance in the ANC systems.

  • PDF

교량구조물의 내진성능평가를 위한 역량스펙트럼 방법의 연성도 감소계수 산정식에 관한 연구 (A Study of Ductility Reduction Factors Formula of Capacity Spectrum Method for Evaluating Seismic Performance of Bridge Structures)

  • 송종걸;김학수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.316-323
    • /
    • 2006
  • The main objective of this study was to derive a formula of ductility reduction factor, expressed as $R{\mu}$. To attain this objective, a study comprised reduction factors computed for stiffness degrading systems undergoing different levels of ductility and to investigate an accuracy of the formula. Based on this study, the main conclusions can be summarized :(1) The ductility reduction factor is primarily affected by the period of the system and the displacement ductility ratio. (2) The proposed formula is simpler and the inelastic deformations of bridge structures are better than those by the others formulas we used before.

  • PDF

A Comparative Study of List Sphere Decoders for MIMO Systems

  • Pham, Van-Su;Yoon, Giwan
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.143-146
    • /
    • 2009
  • In this paper, we investigated the list sphere decoders (LSD) for multiple-input multiple-output (MIMO) systems. We showed that the ordering procedures play an important role in LSD in order to achieve the low complexity without degrading the bit-error-rate (BER) performance. Then, we proposed a novel ordering algorithm for the LSD which uses a look-up table and simply comparative operations. Comparative results in terms of BER performance and computational complexity are provided through computer simulations.

  • PDF

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Residual displacement estimation of simple structures considering soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.69-82
    • /
    • 2019
  • As the residual displacement and/or drift demands are commonly used for seismic assessment of buildings, the estimation of these values play a very critical role through earthquake design philosophy. The residual displacement estimation of fixed base structures has been the topic of numerous researches up to now, but the effect of soil flexibility is almost always omitted. In this study, residual displacement demands are investigated for SDOF systems with period range of 0.1-3.0 s for near-field and far-field ground motions for both fixed and interacting cases. The elastoplastic model is used to represent non-degrading structures. Based on time history analyses, a new simple yet effective equation is proposed for residual displacement demand of any system whether fixed base or interacting as a function of structural period, lateral strength ratio and spectral displacement.

Substrate specificity of bacterial endoribonuclease toxins

  • Han, Yoontak;Lee, Eun-Jin
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.611-621
    • /
    • 2020
  • Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.