DOI QR코드

DOI QR Code

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee (Department of Biochemistry, College of Medicine, Gachon University)
  • Received : 2018.12.07
  • Accepted : 2018.12.18
  • Published : 2018.12.30

Abstract

Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011;3:a004374.
  2. Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 2014;1843:182-96. https://doi.org/10.1016/j.bbamcr.2013.06.031
  3. Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol 2010;694:138-59.
  4. Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 2004;1739:5-25. https://doi.org/10.1016/j.bbadis.2004.08.004
  5. Herrmann J, Soares SM, Lerman LO, Lerman A. Potential role of the ubiquitin-proteasome system in atherosclerosis: aspects of a protein quality disease. J Am Coll Cardiol 2008;51:2003-10. https://doi.org/10.1016/j.jacc.2008.02.047
  6. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 2003;81:678-99. https://doi.org/10.1007/s00109-003-0464-5
  7. Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitinproteasome system: collaborators in neuroprotection. Biochim Biophys Acta 2008;1782:691-9. https://doi.org/10.1016/j.bbadis.2008.10.002
  8. Kanayama H, Tanaka K, Aki M, Kagawa S, Miyaji H, Satoh M, et al. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res 1991;51:6677-85.
  9. Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014;4:862-84. https://doi.org/10.3390/biom4030862
  10. Asher G, Shaul Y. p53 proteasomal degradation: poly-ubiquitination is not the whole story. Cell Cycle 2005;4:1015-8. https://doi.org/10.4161/cc.4.8.1900
  11. Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation "by default". Bioessays 2006;28:844-9. https://doi.org/10.1002/bies.20447
  12. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014;25:304-17. https://doi.org/10.1016/j.ccr.2014.01.021
  13. Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007;27:8284-95. https://doi.org/10.1128/MCB.00050-07
  14. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res 2003;1:1001-8.
  15. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269:682-5. https://doi.org/10.1126/science.7624798
  16. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 1997;11:1464-78. https://doi.org/10.1101/gad.11.11.1464
  17. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 2003;13:41-7. https://doi.org/10.1016/S1044-579X(02)00098-6
  18. Sanchez-Serrano I. Success in translational research: lessons from the development of bortezomib. Nat Rev Drug Discov 2006;5:107-14. https://doi.org/10.1038/nrd1959
  19. Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005;4:686-92.
  20. Li H, Xiao N, Wang Y, Wang R, Chen Y, Pan W, et al. Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of $PIPKI{\gamma}$. Oncogene 2017;36:5668-80. https://doi.org/10.1038/onc.2017.166
  21. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001;276:12477-80. https://doi.org/10.1074/jbc.C100008200
  22. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005;12 Suppl 2:1542-52. https://doi.org/10.1038/sj.cdd.4401765
  23. Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 2009;1793:664-73. https://doi.org/10.1016/j.bbamcr.2008.07.014
  24. Zhang J. Teaching the basics of autophagy and mitophagy to redox biologists: mechanisms and experimental approaches. Redox Biol 2015;4:242-59. https://doi.org/10.1016/j.redox.2015.01.003
  25. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007;9:1102-9. https://doi.org/10.1038/ncb1007-1102
  26. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 2010;30:1049-58. https://doi.org/10.1128/MCB.01344-09
  27. Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci 2017;130:1209-16. https://doi.org/10.1242/jcs.196352
  28. Uttenweiler A, Schwarz H, Mayer A. Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem 2005;280:33289-97. https://doi.org/10.1074/jbc.M506086200
  29. Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004;15:4829-40. https://doi.org/10.1091/mbc.e04-06-0477
  30. Ding WX, Yin XM. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 2008;4:141-50. https://doi.org/10.4161/auto.5190
  31. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell 2017;169:792-806. https://doi.org/10.1016/j.cell.2017.04.023
  32. Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417-21. https://doi.org/10.1016/S1535-6108(04)00120-5
  33. Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol 2006;4:e267. https://doi.org/10.1371/journal.pbio.0040267
  34. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:12-36. https://doi.org/10.2183/pjab.85.12
  35. Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M, Bruzzese FJ, et al. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem J 2010;430:461-76. https://doi.org/10.1042/BJ20100383
  36. Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci 2016;73:3497-506. https://doi.org/10.1007/s00018-016-2255-5
  37. Raynes R, Pomatto LC, Davies KJ. Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 2016;50:41-55. https://doi.org/10.1016/j.mam.2016.05.001
  38. Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 2008;9:826-38. https://doi.org/10.1038/nrn2499
  39. Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005;15:27-33. https://doi.org/10.1016/j.tcb.2004.11.003
  40. Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 2012;12:813-20. https://doi.org/10.1038/nri3339
  41. Groettrup M, Kirk CJ, Basler M. Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 2010;10:73-8. https://doi.org/10.1038/nri2687
  42. Callis J. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 2014;12:e0174. https://doi.org/10.1199/tab.0174
  43. Park CW, Ryu KY. Cellular ubiquitin pool dynamics and homeostasis. BMB Rep 2014;47:475-82. https://doi.org/10.5483/BMBRep.2014.47.9.128
  44. Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012;125:539-48. https://doi.org/10.1242/jcs.093567
  45. Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009;10:755-64. https://doi.org/10.1038/nrm2780
  46. Kolch W, Pitt A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 2010;10:618-29. https://doi.org/10.1038/nrc2900
  47. Wu H, Leng RP. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle 2011;10:1912-5. https://doi.org/10.4161/cc.10.12.15882
  48. Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 2003;300:342-4. https://doi.org/10.1126/science.1080386
  49. Jin J, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 2007;447:1135-8. https://doi.org/10.1038/nature05902
  50. Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 2012;125:531-7. https://doi.org/10.1242/jcs.091777
  51. de Bie P, Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 2011;18:1393-402. https://doi.org/10.1038/cdd.2011.16
  52. Ranaweera RS, Yang X. Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J Biol Chem 2013;288:18939-46. https://doi.org/10.1074/jbc.M113.454470
  53. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. Mdm2 facilitates the association of p53 with the proteasome. Proc Natl Acad Sci U S A 2010;107:10038-43. https://doi.org/10.1073/pnas.0911716107
  54. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24:R453-62. https://doi.org/10.1016/j.cub.2014.03.034
  55. Wang X, Chemmama IE, Yu C, Huszagh A, Xu Y, Viner R, et al. The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem 2017;292:16310-20. https://doi.org/10.1074/jbc.M117.803619
  56. Shringarpure R, Grune T, Davies KJ. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 2001;58:1442-50. https://doi.org/10.1007/PL00000787
  57. Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK, et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 2011;51:1355-64. https://doi.org/10.1016/j.freeradbiomed.2011.06.015
  58. Orlowski M, Wilk S. Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 2003;415:1-5. https://doi.org/10.1016/S0003-9861(03)00197-8
  59. Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014;7:70.
  60. Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 2008;1782:749-63. https://doi.org/10.1016/j.bbadis.2008.06.009
  61. Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 2004;40:2217-29. https://doi.org/10.1016/j.ejca.2004.07.006
  62. Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res 2014;74:7161-7. https://doi.org/10.1158/0008-5472.CAN-14-1446
  63. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993;7:1126-32. https://doi.org/10.1101/gad.7.7a.1126
  64. Ferraiuolo M, Verduci L, Blandino G, Strano S. Mutant p53 protein and the hippo transducers YAP and TAZ: a critical oncogenic node in human cancers. Int J Mol Sci 2017;18:E961. https://doi.org/10.3390/ijms18050961
  65. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of ${\beta}$-catenin degradation in an intact Axin1 complex. Cell 2012;149:1245-56. https://doi.org/10.1016/j.cell.2012.05.002
  66. Pohl SG, Brook N, Agostino M, Arfuso F, Kumar AP, Dharmarajan A. Wnt signaling in triple-negative breast cancer. Oncogenesis 2017;6:e310. https://doi.org/10.1038/oncsis.2017.14
  67. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 2007;120:3327-35. https://doi.org/10.1242/jcs.03485
  68. Choi J, Park SY, Costantini F, Jho EH, Joo CK. Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J Biol Chem 2004;279:49188-98. https://doi.org/10.1074/jbc.M404655200
  69. Hoesel B, Schmid JA. The complexity of $NF-{\kappa}B$ signaling in inflammation and cancer. Mol Cancer 2013;12:86. https://doi.org/10.1186/1476-4598-12-86
  70. Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol 2001;159:387-97. https://doi.org/10.1016/S0002-9440(10)61708-7
  71. Verma IM. Nuclear factor (NF)-kappaB proteins: therapeutic targets. Ann Rheum Dis 2004;63 Suppl 2:ii57-61.
  72. Gambhir S, Vyas D, Hollis M, Aekka A, Vyas A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol 2015;21:3174-83. https://doi.org/10.3748/wjg.v21.i11.3174
  73. Perkins ND. The diverse and complex roles of $NF-{\kappa}B$ subunits in cancer. Nat Rev Cancer 2012;12:121-32. https://doi.org/10.1038/nrc3204
  74. Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 2014;14:517-36. https://doi.org/10.2174/1568009614666140804154511
  75. Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014;18:947-61. https://doi.org/10.1111/jcmm.12279
  76. Gupta N, Hanley MJ, Xia C, Labotka R, Harvey RD, Venkatakrishnan K. Clinical pharmacology of Ixazomib: the first Oral proteasome inhibitor. [published online ahead of print August 17, 2018]. Clin Pharmacokinet. doi: 10.1007/s40262-018-0702-1.
  77. Merin NM, Kelly KR. Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel) 2014;8:1-20. https://doi.org/10.3390/ph8010001
  78. Bu R, Hussain AR, Al-Obaisi KA, Ahmed M, Uddin S, Al-Kuraya KS. Bortezomib inhibits proteasomal degradation of $I{\kappa}B{\alpha}$ and induces mitochondrial dependent apoptosis in activated B-cell diffuse large B-cell lymphoma. Leuk Lymphoma 2014;55:415-24. https://doi.org/10.3109/10428194.2013.806799
  79. Waxman AJ, Clasen S, Hwang WT, Garfall A, Vogl DT, Carver J, et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol 2018;4:e174519. https://doi.org/10.1001/jamaoncol.2017.4519
  80. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol 2018;19:697-712. https://doi.org/10.1038/s41580-018-0040-z
  81. Dahlmann B. Proteasomes. Essays Biochem 2005;41:31-48. https://doi.org/10.1042/bse0410031
  82. Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 2008;9:679-90. https://doi.org/10.1038/nrm2468
  83. Wang B, Liu K, Lin HY, Bellam N, Ling S, Lin WC. 14-3-3Tau regulates ubiquitin-independent proteasomal degradation of p21, a novel mechanism of p21 downregulation in breast cancer. Mol Cell Biol 2010;30:1508-27. https://doi.org/10.1128/MCB.01335-09
  84. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 2008;22:2496-506. https://doi.org/10.1101/gad.1676108