• 제목/요약/키워드: Degradation rate

검색결과 2,412건 처리시간 0.025초

광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석 (An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells)

  • 김수민;배수현;김영도;박성은;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

가속열화시험에 의한 콘크리트용 탄소섬유 강화플라스틱 바의 사용수명 예측 (Service life prediction of CFRP bar for concrete reinforcement based on accelerated degradation tests)

  • 권영일;김승진;이형욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권2호
    • /
    • pp.71-80
    • /
    • 2009
  • This paper discusses the service life prediction methods for CFRP bar for concrete reinforcement using accelerated degradation tests. The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed for the temperature accelerated degradation tests. Methods of obtaining acceleration factors and predicting service life of the CFRP bar using the degradation model are presented.

  • PDF

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Sung Bae;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.19-32
    • /
    • 2021
  • Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals

  • Cho, Changhyun;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2012
  • We demonstrated that reductive degradation of 2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, RDX) can be enhanced by bio-reduced iron-bearing soil minerals (IBSMs) using Shewanella putrefaciens CN32 (CN32). The degradation kinetic rate constant of TNT by bio-reduced magnetite was the highest (0.0039 $h^{-1}$), followed by green rust (0.0022 $h^{-1}$), goethite (0.0017 $h^{-1}$), lepidocrocite (0.0016 $h^{-1}$), and hematite (0.0006 $h^{-1}$). The highest rate constant was obtained by bio-reduced lepidocrocite (0.1811 $h^{-1}$) during RDX degradation, followed by magnetite (0.1700 $h^{-1}$), green rust (0.0757 $h^{-1}$), hematite (0.0495 $h^{-1}$), and goethite (0.0394 $h^{-1}$). Significant increase of Fe(II) was observed during the reductive degradation of TNT and RDX by bio-reduced IBSMs. X-ray diffraction and electron microscope analyses were conducted for identification of degradation mechanism of TNT and RDX in this study. 4-amino-dinitrotoluene were detected as products during TNT degradation, while Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, Hexahydro-1,3-dinitroso-5-nitro-1,3,5triazine, and Hexahydro-1,3,5-trinitroso-1,3,5-triazine were observed during RDX degradation.

마이크로파에 의해 합성된 β-TCP/PLGA 복합체의 의사체액에서의 분해 거동 (In vitro Degradation of β-TCP/PLGA Composites Prepared with Microwave Energy in Simulated Body Fluid)

  • 진형호;민상호;현용택;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.676-680
    • /
    • 2006
  • The biodegradable $\beta$-tricalcium phosphate ($\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The degradation behavior of $\beta$-TCP/PLGA composite was investigated by soaking in simulated body fluid (SBF) for 4 weeks. The molecular weight of the $\beta$-TCP/PLGA composites decreased with soaking time until week 2, whereas the loss rate of molecular weight reduced after week 2. The incubation time was needed for the degradation of the $\beta$-TCP, indicating that the $\beta$-TCP should be detached from the PLGA matrix and then degraded into SBF solution. The studies of mass loss of the composites with the soaking time revealed that the degradation behavior of PLGA would be processed with the transformation from the polymer to the oligomer followed by the degradation. Morphological changes, whisker-like, due to transformation and degradation of polymer in the composites were observed after week 2. On the basis of the results, it found that the degradation behavior of $\beta$-TCP/PLGA composites was influenced by the $\beta$-TCP content in the composites and the degradation rate of the composites could be controlled by the initial molecular weight of PLGA in the composites.

나노에멀션 내의 베타카로텐 분해에 미치는 산화방지제의 영향 (Influence of antioxidants on β-carotene degradation in nanoemulsions)

  • 박준규;권윤중
    • 한국식품과학회지
    • /
    • 제50권3호
    • /
    • pp.324-330
    • /
    • 2018
  • 본 연구에서는 서로 다른 성질을 지닌 기름(MO, CO, PO)을 선정한 후 산화방지제(아스코브산, 토코페롤)의 종류와 농도를 달리한 베타카로텐 함유 나노에멀션을 제조하여, 산화안정성을 검토하였다. 베타카로텐 나노에멀션은 낮은 pH에 비하여 높은 pH에서 화학적으로 더 안정하였다. 또한 베타카로텐의 산화는 기름의 특성에 많은 영향을 받았으며, 지방산 사슬길이가 길며 포화 지방산 함량이 낮은 CO를 유상(oil phase)으로 사용할 경우 베타카로텐 산화를 더욱 가속화시키는 것으로 나타났다. 에멀션 내의 베타카로텐의 분해는 아스코브산과 토코페롤 산화방지제를 첨가함으로써 지연시킬 수 있었다. 그러나 베타카로텐을 함유한 산성 상태의 음료와 식품을 제조하고 이를 장기간 보존하기 위해서는 높은 농도의 산화방지제 첨가가 요구됨을 확인하였다.

마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화 (Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine)

  • 김정호;김민재;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해 (Electrochemical Degradation of Phenol Using Dimensionally Stable Anode)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.