• Title/Summary/Keyword: Degradation factor

Search Result 963, Processing Time 0.027 seconds

A Study on Accelerated Photo-Degradation Test for Lifetime Estimation of Ink-jet Ink (잉크젯 잉크의 수명예측을 위한 광열화 가속시험법에 관한 연구)

  • Koo, Hyun-Jin;Cho, Hang-Won;Ji, Byung-Chul
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.154-162
    • /
    • 2015
  • We have performed accelerated photo-degradation test using a 10-Sun level high irradiance $Weather-Ometer^{(R)}$ (10-Sun Ci5000) in an attempt to study acceleration and correlation between accelerated and service conditions for ink-jet ink. The accelerated test was used to predict lifetimes of ink-jet ink through the calculation of scaling factor for intensity of irradiance and duration of usage combined with estimation of lifetime distribution and inverse power model as a life-stress model. The lifetimes and acceleration factors for foreign and domestic inks were compared with each other. The results showed that the failure mechanisms and life-stress models for ink-jet ink were different among the color of ink which means that we might be in need of further study by color of inks.

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Evaluation of failure and Design criteria for the pressrue vessel (압력용기의 설계기준 및 손상 평가)

  • Oh Hwansup;Jung Hyojin;Pak Sangpil;Son Duik
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.228-233
    • /
    • 2005
  • The damage of the pressure courage by degradation can become the reason of unexpected break down or failure accident and it is very important because safety accident, the production loss, environmental pollution, social problems are occur. Consequently The result to investigat of failure accident for domestic pressure vessel, the factor of degradation is SCC, Sorrosion, Cavity, Crack.

  • PDF

Enhanced Parallel-Branch Spiral Inductors (병렬분기 방법을 이용한 박막 나선 인덕터의 특성 향상)

  • 서동우;민봉기;강진영;백문철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.89-93
    • /
    • 2002
  • In the present paper we suggested a parallel-branch structure of aluminum spiral inductor for the use of RF integrated circuit at 1∼3 GHz. The inductor was implemented on P-type silicon wafer (5∼15 Ω-cm) under the standard CMOS process and it showed a improved quality(Q) factor by more than 10% with no degradation of inductance. The effect of the structure modification on the Q factor and the inductance was scrutinized comparing with those of the conventional spiral inductors.

  • PDF

Heme Oxygenase-1 : Its Therapeutic Roles in Inflammatory Diseases

  • Pae, Hyun-Ock;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.12-19
    • /
    • 2009
  • Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.

Overexpression of AtCAF1, CCR4-associated factor 1 homologue in Arabidopsis thaliana, negatively regulates wounding-mediated disease resistance

  • Kwon, Tack-Min;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.278-284
    • /
    • 2011
  • The CCR4-CAF1-NOT complex-mediated degradation of mRNA is a fundamental aspect of gene regulation in eukaryotes. We herein examined the role of AtCAF1 in the innate immune and wound responses of plants. Our results showed that overexpression of AtCAF1 significantly downregulated the transcript level of EFR but not FLS2 and BRI1, as well as abolished up-regulated expression pattern of EFR in response to wounding. Consistently, Agrobacteriummediated transient expression of GUS was highly enhanced in the transgenic plants overexpressing AtCAF. Furthermore, JA responsive genes were down-regulated by overexpression of AtCAF, causing the transgenic plants overexpressing AtCAF more susceptible to necrotrophic fungal pathogen, Botrytis cinerea. These results suggest that The CCR4-CAF1-NOT complex-mediated degradation of mRNA negatively regulates wounding-mediated disease resistance in Arabidopsis thaliana.

Effect of Environmental Conditions on the Biodegradation of Cellulose Fibers - Effect of Humidity in Soil - (환경 조건에 따른 셀룰로스계 섬유의 생분해성 - 토양 수분율을 중심으로 -)

  • Kang, Yun-Kyung;Park, Chung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1027-1036
    • /
    • 2005
  • Based on the correlation analysis result of preceding research, the biodegradabilities of cellulose fibers were closely related to the moisture regain of the samples, which reflects the hydrophilicity and internal structure of the fibers. In addition to this factor, it was expected that the biodegradation conditions influence the biodegradability of fibers. In this study, widely used cellulose fibers including cotton, rayon, and acetate were used. The biodegradabilities of cellulose fibers were measured by soilburial test, and then the degradation behaviors based on each condition were compared. Moreover, the effects of degradation conditions such as humidity of the soil were investigated. Changes in the internal structure of samples were also observed by X-ray analysis according to the soil burial time. It was shown that humidity of soil facilitated the degradation of cotton, rayon, and acetate fibers, showing higher degradation rate with higher humidity in soil. This effect was shown to be much greater in the fibers of high moisture regain such as cotton and rayon. In respect of microstructure change, crystallinities and their crystal size of fibers decreased remarkably in the soil of higher humidity. It was revealed that degradation of crystalline area was more dependent on the soil humidity than that of amorphous area.

Evaluation of Degradation and Safety of Small Agricultural Reservoir (소규모 농업용 저수지의 노후도 및 안전도 평가 -고삼 저수지에 대한 사례 연구-)

  • 장병옥;박영곤;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Ths study was peformed to evaluate the degree of degradation and safety of a small agricultural reservoir, Kosam Reservoir, in Kyungki Province. Evaluation was done by the program developed by the authors. Results of the study are as follows: 1) Although many burrows were found in downstream side of embankment and cracks were found in wall joining spillway, it appeared that degree of degradation of embankment was in good conditions. 2) Compressive strengths of concrete of crest, side channel, chute floor of spillway were in poor condition. But it appeared that overall degree of degradation of structures was in medium condition based on the criteria of the evaluation system 3) From the analysis of slope stability, safety factor of downstream slope was over 3.3 for the worst condition, such as flood and high water level and that of upstream slope was also over 3.6 for rapid drawdown. In case of earthquake, safety factors were over 2.5 for all conditions. Therefore embankment slopes of Kosam Reservoir were very stable for normal and earthquake condition. 4) As upon assumed failure of embankment of Kosam Reservoir, degree of damage was estimated to be very serious because of many loss of life and properties in the downstream area. 5) Overall grade of safety of Kosam Reservoir was in good condition. Therefore safety was considered to be "No problems" at the present time but further degradation may be proceeded partly and continuously as time goes by.e goes by.

  • PDF

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.

Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation (경년열화된 철근콘크리트 전단벽의 지진응답에 영향을 미치는 변수들의 민감도분석)

  • Park, Jun-Hee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • After a concrete is poured, reinforced concrete structures were distressed by physical and chemical factor over time. It is in need to define important variables related to structural behavior for effectively conducting seismic analysis of structures with age-related degradation. In this study, a sensibility analysis using the first-order second moment method was performed to analyze an important variables for the reinforced concrete shear wall with age-related degradation. Because the seismic capacity of aging structures without a concrete hardening effect can be underestimated, the sensibility of analysis variables was analyzed according to the concrete hardening. Important variables for RC shear wall with age-related degradation was presented by using the tornado diagram.