• Title/Summary/Keyword: Degradable polymer

Search Result 46, Processing Time 0.022 seconds

Swelling Behavior of Biodegradable Crosslinked Gel based on Poly(aspartic acid) and PEG-diepoxide

  • Min, Suk-Kee;Kim, Ji-Heung;Chung, Dong-Jun
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • Poly(aspartic acid), PASP, is a biodegradable, water-soluble polymer and offers a biodegradable alternative to polycarboxylates and other non-degradable water-soluble polymers. PASP one of poly (amino acid)s, possesses carboxylic acid pendant group in its repeating unit, which can be used for various further modification purposes. In this study we prepared high molecular weight polysuccinimide, as the precursor polymer for PASP, by thermal polycondensation ofL-aspartic acid in the presence of phosphoric acid. The polysuccinimide was hydrolyzed with 0.1 N sodium hydroxide, and then acidified to give PASP. High water-absorbent gels were produced by thermal crosslinking of freeze-dried mixture of partially-neutralized PASP and different amount of low moi. wt. PEG-diepoxide compounds in aqueous medium. The swelling behavior of the prepared gels from different size and composition of crosslinking reagent in different media was investigated and the results were discussed. This PASP-based hydrogel materials possessing inherent biodegradability, potential non-toxicity and biocompatibility, is expected to be used as a substrate for various biomedical applications as well as a general purpose super-absorbent polymer.

  • PDF

Crystallization behaviour and Degradation of Poly(butylene succinate) ionomer (Poly(butylene succinate) ionomer의 결정화 거동과 분해)

  • Han, Sang-Il;Kim, Dong-Kuk;Im, Seung-Soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.79-82
    • /
    • 2003
  • An ionomer is defined as an ion-containing polymer with a small amount (usually up to 10-15 mol%) of ionic groups along the backbone chains or as pendant groups. Ionomers have been extensively studied because of the significant changes in their physical properties due to the formation of ionic aggregates, such as enhanced mechanical properties, high melt viscosity, and increased thermal properties.$\^$1-5/ Although there have been many studies of ionomers, the crystallization behaviour of degradable ionomers is still not understood. (omitted)

  • PDF

Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses

  • Yeo, Jun-Seok;Seong, Dong-Wook;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • The surface modification of microfibriled cellulose (MFC) was carried out through the hydrolysis-condensation reaction using (3-aminopropyl)triethoxysilane (APS) and 3-glycidyloxypropyltriethoxysilane (GPS) and then the modified cellulose was compounded with bio-degradable poly(lactic acid) (PLA). Also, pristine MFC was compounded with PLA as a control groups. The confirmation of surface modification for the pristine MFC was characterized by FT-IR and SEM/EDX. The thermal and mechanical properties of the PLA/MFC composites depended on the content of MFC and the type of silane coupling agents. From the thermal, morphological and mechanical behaviors of the PLA/MFC composites, it was found that GPS-MFC was more successful to improve the interface adhesion between PLA matrix and the surface of MFC than that of APS-MFC.

Conductive Polymer Coated Electro-active Paper(EAPap) (전도성 고분자를 결합한 EAPap작동기에 관한 연구)

  • Yun, Sungryul;Ounaies Zoubeida;Bae, Seung-Hun;Kim, Jaehwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1077-1083
    • /
    • 2005
  • Electro-Active Paper (EAPap) is one of attractive electro-active polymer (EAP) materials for artificial muscles due to its many advantages such as light weight, biologically degradable, low cost, large displacement output, low actuation voltage and low power consumption. However, drawbacks of EAPap actuators include low force output and humidity dependence. To enhance the performance of EAPap, conductive polymer (PPy) and SWNT/conductive polymer (PANI) are coated on EAPap PPy as conductive polymer is coated on cellulose EAPap by means of electrochemical deposition. Two different dopants are used in PPy through conducting polymer processing. SWNTS are mixed with PANI in emeraldine base along with different dopants. The compound materials are coated on cellulose EAPap using spin coating system. The performance of PPy/EAPap and SWNT/PANI/EAPap are evaluated in terms of bending displacement, blocked force, and the effects of dopants, humidity, coaling time, voltage and frequency are investigated. Comparing with EAPap actuators, SWNT/PANI/EAPap actuators show $200\%$ improvement of bending displacement and $300\%$ increment of blocked force.

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF

Effects of UV Irradiation and Thermal Treatment of Photo-Degradable Polyimide Layer on LC Alignment (광분해성 고분자를 이용한 액정배향에서의 광조사 및 열처리 효과)

  • Lee, Jang-Ju;Lee, Won-Ho;Shin, Yong-Il;Paek, Sang-Hyon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.145-148
    • /
    • 2012
  • The effects of the linearly polarized UV (LPUV) irradiation and thermal treatment of a photo-degradable polyimide (CBDA-ODA) alignment layer (AL) on its AL properties, liquid crystal (LC) alignment, and LCD characteristics have been investigated. The best quality of LC photo-alignment have been induced by the LPUV-irradiation with much (about 5~10 times) less dosage than that generating the maximum anisotropy of the AL. A thermal treatment of the LPUV-irradiated AL has effectively removed the undesirable, low-M.W. fragments of the AL generated during the photo-decomposition and increased the stability of the AL, which has resulted in improvement of the LC alignment and the LCD property.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

NOVEL CATIONIC POLYMERS DESIGNED FOR NON-VIRAL GENE DELIVERY

  • Zhong Zhiyuan;Lin, Chao;Song, Yan;Lok Martin C.;Jiang Xulin;Christensen Lane V.;Engbersen Johan F.J.;Kim, Sung-Wan;Hennink Wim E.;Feijen Jan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.44-45
    • /
    • 2006
  • Gene therapy holds great promise for treating various forms of diseases with a genetic origin including cystic fibrosis, different forms of cancer, and cardiovascular disorders. The clinical use of gene therapy treatments is however restricted, mainly because of the absence of safe and efficient gene delivery technologies. In our group, with an aim of developing efficient and nontoxic polymeric gene delivery systems, several novel types of polymeric gene carriers have been designed, synthesized, and evaluated. Herein, I will mainly present our recent work on low molecular weight linear PEI-PEG-PEI triblock copolymers, degradable hyperbranched poly(ester amine)s, and reduction-sensitive poly(amido amine)s.

  • PDF

A Multisegmented Polystyrene with pH-Cleavable Linkages

  • Kang, Tae-Hyeon;Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2694-2698
    • /
    • 2014
  • A multisegmented polystyrene (PS) with pH-cleavable ester and carbamate linkages was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). ATRP was employed to synthesize polystyrene from hydroxyl-terminated initiator using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) as the catalyst. The reaction of the resulting PS with sodium azide yielded the azido-terminated polymer. The hydroxyl group in the other end of the polymer was reacted with 4-nitrophenyl chloroformate (NPC), followed by reaction with propargylamine to produce an alkyne end group with a carbamate linkage. The PS with an alkyne group in one end and an azide group in the other end was then self-coupled in the presence of CuBr/2,2'-bipyridyl (bpy) in DMF to yield a desired multisegmented PS. Molecular weight and molecular weight distribution of the self-coupled polymer increased with time, as in the typical step-growth-type polymerization processes. Finally, we demonstrated that the ester and carbamate linkages of the multisegmented PS were hydrolyzed in the presence of HCl to yield individual PS chains.