• Title/Summary/Keyword: Deformation problem

Search Result 844, Processing Time 0.021 seconds

Wave propagation in functionally graded beams using various higher-order shear deformation beams theories

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • In this work, various higher-order shear deformation beam theories for wave propagation in functionally graded beams are developed. The material properties of FG beam are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, the governing equations of the wave propagation in the FG beam are derived by using the Hamilton's principle. The analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. The effects of the volume fraction distributions on wave propagation of functionally graded beam are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

A Study on the Reliability Evaluation of Thermal Deformation of Electronic Product Package by ESPI (ESPI를 이용한 전자제품 패키지 열변형 신뢰성 평가에 관한 연구)

  • Cho Ji-Hyun;Lee Jae-Hyuk;Park Sang-Young;Jang Joong-Soon;Kim Gwang-Sub
    • Journal of Applied Reliability
    • /
    • v.5 no.4
    • /
    • pp.439-450
    • /
    • 2005
  • Thermal deformation of Digital Television effect friction noise directly. However there was no methods to find and to solve the thermal friction noise which is huge problem in Digital Television In this study, to figure out occurrence cause of friction noise of the product, we measured thermal deformation of the product to organize a triggering device united with Laser Doppler Vibrometer(LDV) which turned occurrence moment of thermal friction noise into a possibility to measure. In conclusion, we could offer an effective information of design, and ensured ESPI(Electronic Speckle Pattern Interferometry) measure technique which is more detailed than the past way.

  • PDF

Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method (유한요소법을 이용한 축대칭 구조물의 비선형 거동해석)

  • 구영덕;민경탁
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

Exact Distortional Deformation Analysis of Steel Box Girders (강상자형 거더의 엄밀한 단면변형(Distortion) 해석)

  • 진만식;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

Optimal Approximated Development of General Curved Plates Based on Deformation Theory (변형 이론을 기반으로한 곡면의 최적 근사 전개)

  • 유철호;신종계
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

A Study on the Profile Modification of Spur Gears for the Prevention of Gear Tooth Overlap by Deformation (평기어 치의 변형 후 치간섭 방지를 위한 치형 수정에 관한 연구)

  • Huh, Gyoung-Jae;Park, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.208-214
    • /
    • 1999
  • The purpose of this paper is to develop a profile modification technique of spur gears and its computer program for the prevention of gear tooth overlap. In the gear system, tooth overlap produces an impact at the initial contact of some tooth pairs. In this analysis, contact surface was assumed to be unbonded and frictionless under small deformation and stain. The problem is formulated by a variational statement with inequality constraint. Tooth load sharing is obtained by the application of contact theory, and overlap is known by the analysis of deformation. After carrying out the profile modification of gear tooth, we verified the reasonable results.

  • PDF

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.