• 제목/요약/키워드: Deformation model

검색결과 3,689건 처리시간 0.03초

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

  • Fadhillah, Muhammad Fulki;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.57-67
    • /
    • 2021
  • An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

Al 6061 합금의 고온 소성변형 조건의 예측 (Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy)

  • 김성일;정태성;유연철;오수익
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

연구로용 우라늄-실리사이드 분산 핵연료의 변형모델 (A Deformation Model of Uranium-Silicide Dispersion Fuel for Research Reactor)

  • T. S. Byun;S. K. Suh;W. Hwang
    • Nuclear Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.150-161
    • /
    • 1996
  • 연구로용 우라늄-실리사이드 분산 핵연료에서의 응력 및 변형율 분포를 계산할 수 있는 변형모델을 개발하였다. 이 변형모델은 탄소성이론 및 지수법칙 크리프이론을 기초로 한 것이며, 또한 등방 핵연료팽윤 및 열팽창을 가정하였다. 개발된 모델을 HANARO 및 카나다의 NRU 핵연료에 적용하여 본 결과 핵연료의 변형을 성공적으로 계산하는 것으로 판단되었다. 계산결과에 따르면, 연구로용 우라늄-실리사이드 분산핵연료가 연소할 때 핵연료심에서 가장 중요한 변형기구는 팽윤이며, 피복관에서 가장 중요한 변형기구는 크리프이다. 또한, 피복관에서 원주방향 최대응력은 항상 5 MPa 이하로서 항복응력보다 훨씬 낮게 유지되었다. 여기서 고려한 두 핵연료설계에 대해서 전 연소도 범위에서 핵연료봉의 부피변화는 10% 이하로 예측되었다.

  • PDF

소성 대변형 및 이방성 손상의 유한요소해석 (Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage)

  • 노인식;임상전
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.145-156
    • /
    • 1993
  • 대변형, 대회전, 대변형도 문제를 고려한 탄소성-손상 유한요소 정식화 과정을 연구함으로써 구조물의 모든 비선형 거동 및 손상을 합리적으로 예측할 수 있는 수치모형을 개발하였다. 재료의 소성 변형과정에서 발생되는 손상을 합리적으로 고려하기 위하여 연속체 손상역학의 접근방법을 이용하여 구성방정식을 정식화하였으며 Updated Lagrangian 정식화방법, 호장증분법 등의 비선형 강성방정식 해법을 적용하여 2차원 평면문제를 대상으로 하는 탄소성-손상 유한요소해석 프로그램을 구성하였다. 여러가지 예제 계산을 통하여 이 수치모형의 적용성 및 타당성을 검토한 결과 대변형 문제, 손상을 포함하는 재료 비선형문제 공히 합리적인 해석결과를 제시하고 있슴을 확인할 수 있었다.

  • PDF

응력완화시험에 의한 도토리 전분겔의 물성론적 모형 분석 (Rheological Model Analysis of Acorn Starch Gels by Stress Relaxation Test)

  • 김영아;이혜수
    • 한국식품조리과학회지
    • /
    • 제5권1호
    • /
    • pp.49-52
    • /
    • 1989
  • 도토리 조전분겔과 정제전분겔에 대하여, 변형의 정도를 달리한 응력완화시험을 실시하였다. 그 결과 초기응력($\sigma$$_{o}$ )은 변형정도에 무관하게 항상 정제전분겔이 큰값을 나타내었고, 평형응력($\sigma$$_{e}$)은 조전분겔이 더 큰 값을 보여주었다. 그러나 초기응력에 대한 평형응력의 비($\sigma$$_{e}$/$\sigma$$_{o}$ )는 60%변형의 경우에 최소값을 나타내었다. 응력완화곡선의 물성론적 모형 분석은 축차잔차법을 사용하였다. 60%변형의 경우, 조전분겔은 7-element 정제전분겔 은 5-element generalized Maxwell model로 분석되었고, 45%변형의 경우에는 조전분겔은 5-element, 정제전분겔은 3-element model로 표현할 수 있었다. 즉 조전분겔에 비해 타 성분들이 좀 더 제거된 정제전분겔이 보다 더 단순한 모형으로 분석되었다.

  • PDF

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

Estimation of the Crustal Deformation Caused by Earthquake and Its Use in Updating Published Coordinates of Geodetic Control Points - A Case Study of the 2011 Tohoku Earthquake’s Impact in South Korea

  • Cho, Jae Myoung
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.485-495
    • /
    • 2015
  • The Tohoku Earthquake, which hit Japan on March 11, 2011, was a massive magnitude 9.0 earthquake, with the earthquake itself causing damage and the resulting tsunami additionally causing enormous material and human damage. The crustal deformation at that time reached a maximum of 5.24 m in Japan, Neighboring countries South Korea and China as well as the Southeast Asian region also witnessed crustal deformation ranging from a few centimeters to a few meters. The detailed analysis in this study based on data from 72 of the sites in South Korea where GNSS CORS was installed showed that South Korea underwent heterogeneous crustal deformation from the Tohoku earthquake, with a maximum of 55.5 mm, a minimum of 9.2 mm, and an average of 22.42 mm. A crustal deformation model was developed, applied, and evaluated for accuracy in this study for a prompt revision of the survey results of the control points that were changed by the crustal deformation. The survey results were revised by applying a crustal deformation model to the 1,195 unified control points installed in South Korea prior to the Tohoku earthquake. The comparison of these 1,195 points with their new survey results showed that the RMSE decreased from 14.1 to 3.4 mm and that the maximum result difference declined from 39 to 10 mm. Revision of the survey results of the control points using the crustal deformation model is deemed very useful considering that the accuracy of the survey results of the unified control points in South Korea is 3 cm.

강부재의 대변형 예측을 위한 3차원 탄소성 유한변위해석의 정식화에 대한 비교연구 (A Comparative Study on Formulation of Three-Dimensional Elastic-Plastic Finite Deformation Analysis for Prediction Large Deflection)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제6권4호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 연구에서는 임의의 반복하중 작용시 강구조물에 발생하는 대변형 및 반복소성거동을 정확히 예측하기 위하여 유한변위이론과 반복소성이력모델을 적용한 3차원 탄소성 유한요소 해석기법을 개발하였다. 반복소성이력모델은 강재의 단조재하실험 및 반복하중실험 결과에 기초하여 정식화되었다. 개발된 해석기법의 정도는 Bilinear모델 및 미소변위이론을 적용한 해석기법 및 실험결과와 비교하여 검증하였다. 본 연구에서 개발한 유한변위이론과 반복소성이력모델을 적용한 3차원 유한요소 해석기법이 임의의 반복하중을 받는 원형강교각의 대변형 및 반복소성거동을 정확히 예측할 수 있음을 알 수 있었다.

  • PDF

Surface Deformation Measurement of the 2020 Mw 6.4 Petrinja, Croatia Earthquake Using Sentinel-1 SAR Data

  • Achmad, Arief Rizqiyanto;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.139-151
    • /
    • 2021
  • By the end of December 2020, an earthquake with Mw about 6.4 hit Sisak-Moslavina County, Croatia. The town of Petrinja was the most affected region with major power outage and many buildings collapsed. The damage also affected neighbor countries such as Bosnia and Herzegovina and Slovenia. As a light of this devastating event, a deformation map due to this earthquake could be generated by using remote sensing imagery from Sentinel-1 SAR data. InSAR could be used as deformation map but still affected with noise factor that could problematize the exact deformation value for further research. Thus in this study, 17 SAR data from Sentinel-1 satellite is used in order to generate the multi-temporal interferometry utilize Stanford Method for Persistent Scatterers (StaMPS). Mean deformation map that has been compensated from error factors such as atmospheric, topographic, temporal, and baseline errors are generated. Okada model then applied to the mean deformation result to generate the modeled earthquake, resulting the deformation is mostly dominated by strike-slip with 3 meter deformation as right lateral strike-slip. The Okada sources are having 11.63 km in length, 2.45 km in width, and 5.46 km in depth with the dip angle are about 84.47° and strike angle are about 142.88° from the north direction. The results from this modeling can be used as learning material to understand the seismic activity in the latest 2020 Petrinja, Croatia Earthquake.