• Title/Summary/Keyword: Deformation imaging

Search Result 60, Processing Time 0.018 seconds

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Magnetic resonance imaging findings of the retrodiskal tissue in TMJ internal derangement (측두하악관절 내장증에서의 관절원판 후조직의 자기공명영상)

  • Cho Bong-Rae
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Purpose: To describe the MRI findings of the retrodiskal tissue in patients presenting with TMJ internal derangement and to correlate these findings with clinical and other MRI manifestations. Materials and Methods: One hundred eighteen joints of 63 patients with TMJ internal derangement were examined by MRI. Tl-weighted sagittal MR images taken in both closed- and open-mouth were evaluated for the presence of demarcation between disk and retrodiskal tissue, the presence of low signal intensity, and the depiction of the temporal part of the posterior attachment. The results were correlated with the duration of TMJ internal derangement, the presence of pain, and other MRI findings, including the type of internal derangement, the extent of disk displacement, the degree of disc deformation, and the presence of osteoarthrosis. Results: A significant relationship between the presence of low signal intensity in the retrodiskal tissue and other MRI findings was determined. Low signal intensity on the open-mouth view was observed more frequently in patients with disc displacement without reduction, severe disc displacement and deformation, and osteoarthrosis (p<0.05). The demarcation between disk and retrodiskal tissue, and the depiction of the temporal part of the posterior attachment(TPA) were correlated neither with clinical, nor with other MRI findings. Conclusion: This study suggests that low signal intensity in the retrodiskal tissue on open-mouth MR image can be indicative of advanced stages of disk displacement.

  • PDF

Transfer Learning based Parameterized 3D Mesh Deformation with 2D Stylized Cartoon Character

  • Sanghyun Byun;Bumsoo Kim;Wonseop Shin;Yonghoon Jung;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3121-3144
    • /
    • 2023
  • As interest in the metaverse has grown, there has been a demand for avatars that can represent individual users. Consequently, research has been conducted to reduce the time and cost required for the current 3D human modeling process. However, the recent automatic generation of 3D humans has been focused on creating avatars with a realistic human form. Furthermore, the existing methods have limitations in generating avatars with imbalanced or unrealistic body shapes, and their utilization is limited due to the absence of datasets. Therefore, this paper proposes a new framework for automatically transforming and creating stylized 3D avatars. Our research presents a definitional approach and methodology for creating non-realistic character avatars, in contrast to previous studies that focused on creating realistic humans. We define a new shape representation parameter and use a deep learning-based method to extract character body information and perform automatic template mesh transformation, thereby obtaining non-realistic or unbalanced human meshes. We present the resulting outputs visually, conducting user evaluations to demonstrate the effectiveness of our proposed method. Our approach provides an automatic mesh transformation method tailored to the growing demand for avatars of various body types and extends the existing method to the 3D cartoon stylized avatar domain.

Right Ventricular Strain Is Associated With Increased Length of Stay After Tetralogy of Fallot Repair

  • Ranjini Srinivasan;Jennifer A. Faerber;Grace DeCost;Xuemei Zhang;Michael DiLorenzo;Elizabeth Goldmuntz;Mark Fogel;Laura Mercer-Rosa
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.1
    • /
    • pp.50-58
    • /
    • 2022
  • BACKGROUND: Little is known regarding right ventricular (RV) remodeling immediately after Tetralogy of Fallot (TOF) repair. We sought to describe myocardial deformation by cardiac magnetic resonance imaging (CMR) after TOF repair and investigate associations between these parameters and early post-operative outcomes. METHODS: Fifteen infants underwent CMR without sedation as part of a prospective pilot study after undergoing complete TOF repair, prior to hospital discharge. RV deformation (strain) was measured using tissue tracking, in addition to RV ejection fraction (EF), volumes, and pulmonary regurgitant fraction. Pearson correlation coefficients were used to determine associations between both strain and CMR measures/clinical outcomes. RESULTS: Most patients were male (11/15, 73%), with median age at TOF repair 53 days (interquartile range, 13,131). Most patients had pulmonary stenosis (vs. atresia) (11/15, 73%) and 7 (47%) received a transannular patch as part of their repair. RV function was overall preserved with mean RV EF of 62% (standard deviation [SD], 9.8). Peak radial and longitudinal strain were overall diminished (mean ± SD, 33.80 ± 18.30% and -15.50 ± 6.40%, respectively). Longer hospital length of stay after TOF repair was associated with worse RV peak radial ventricular strain (correlation coefficient (r), -0.54; p = 0.04). Greater pulmonary regurgitant fraction was associated with shorter time to peak radial RV strain (r = -0.55, p = 0.03). CONCLUSIONS: In this small study, our findings suggest presence of early decrease in RV strain after TOF repair and its association with hospital stay when changes in EF and RV size are not yet apparent.

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

Modeling of 3D object shape based on Superquadrics and Z-Buffer Algorithm

  • Kim, Dae-Hyun;D.H. Hyeon;Lee, S.H.;Park, J.S.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1088-1091
    • /
    • 2000
  • Superquadrics can represent various and complex 3D objects with only some parameters(size, position, deformation etc.). So if we use both superquadrics and deformed superquadrics, we can also represent more realistic 3D objects which are existed in real world. In this paper we use the z-buffer algorithm and stencil buffer together because this is very useful when the superquadric primitives are combined. The fundamental ideas are illustrated with a number of tables and figures.

  • PDF

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

Optical Design of an Image-space Telecentric Two-mirror System for Wide-field Line Imaging

  • Lee, Jong-Ung;Kim, Youngsoo;Kim, Seo Hyun;Kim, Yeonsoo;Kim, Hyunsook
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.344-350
    • /
    • 2017
  • We present a new design approach and an example design for an image-space telecentric two-mirror system that has a fast f-number and a wide-field line image. The initial design of the telecentric mirror system is a conventional axially symmetric system, consisting of a flat primary mirror with fourth-order aspheric deformation and an oblate ellipsoidal secondary mirror to correct spherical aberration, coma, and field curvature. Even though in the optimized design the primary mirror is tilted, to avoid ray obstruction by the secondary mirror, the image-space telecentric two-mirror system shows quite good imaging performance, for a line imager.