• Title/Summary/Keyword: Deformation Control Ring

Search Result 14, Processing Time 0.025 seconds

Finite element analysis and experiment on the formation of adiabatic shear band in 4340 steel (4340강의 단열 전단밴드생성에 대한 유한요소해석 및 실험적 고찰)

  • 정동택;유요한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1134-1143
    • /
    • 1994
  • A study of adiabatic shear band formation and propagation of 4340 steel was done using the stepped speciment which was subjected to high velocity impact. The high velocity impact was performed on compression Hopkinson bar impact machine. After the controlled impact, the specimen was prepared for visual inspection. Numerical simulation was also performed with same geometrical dimension using explicit time integration finite element code. Experimental results were then compared with the numerical prediction. It was found that the numerical prediction is quite accurate, average thickness of adiabatic shear band is about $10{\mu}m$, the macro crack around shoulder is due to folding, and the deformation control ring is effective to freeze the propagation of adiabatic shear band.

A study on the flexural virations for the ring with symmetrical cross section (대칭단면 원환부품의 평면진동에 관한 연구)

  • 김광식;김강년
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.56-62
    • /
    • 1984
  • Various automotive and machine parts are having the shape of circular ring and the study and the verification of its dynamic characteristics can be the important basis of quality control and improvement of performance of inner and outer race of ball and roller radial bearing, ring gear, seal, etc. In this study, three separate sets of governing equations on the flexural vibration of circular ring were formulated each considering the effects of viscous damping, rotatory inertia and shear deformation, and three frequency formulas were derived. Numerical values of frequencies of circular and rectangular cross section ring were tabulated and compared with experimental value. Some important parameters were found in the ring vibration characteristics.

  • PDF

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.

A Study on the Thermal Behaviro of Machine Tool Spindle System (공작기계 주축계 열적거동에 관한 연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • According to the development of tool material and the improvement of machinability of cutting material like aluminium alloy, the higher spindle speed is needed. However, the higher speed causes the heat generation of bearings, the deformation of spindle unit parts, and the rotational accuracy of spindle to be worse. Therefore, it is essential to analyze and control the heat generation and the thermal behavior of spindle unit in order to have higher speed and better rotational accuracy. This paper shows the analogy between the analyzation of heat generation and thermal behavior of high speed spindle system by finite element method and the test results of actual temperature rise through running test, and shows the necessity of cooling the spindle and inner ring side of bearings for the thermal balance of high speed spindle system.

  • PDF

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites using 3-D Shell Elements (3차원 쉘 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소 해석)

  • Lee, Hyoung-Wook;Huh, Hoon;Kim, Jin-Young;Jeong, Soo-Gyo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.274-279
    • /
    • 2000
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zero-energy modes of the element. An inflation analysis and a lateral deformation analysis of an air spring are carried out. Numerical analysis results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force.

  • PDF

The Acoustic Vibration Properties for Chicken Eggs (계란의 음향진동 특성)

  • 최완규;조한근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.293-300
    • /
    • 2002
  • Surface crack detection is an important aspect in the quality control process of egg markets. The acoustic vibration of an egg could be used as a critical factor in evaluating the eggshell quality. The mode shape indicates the egg vibration behavior at different locations with respect to the input impulse and provides important information for the optimum sensor location to obtain the desired acoustic measurements. Theoretical analysis and experimental measurements were conducted to determine the acoustic vibration modes in eggs. The resonant fiequencies of the first and second resonance mode of intact eggs were found to be distributed between 2kHz and 7kHz range. The measured mode shapes of an egg were similar to theoretical shapes of homogeneous, elastic spheres. An elliptical deformation at the equator ring of the egg was observed. The frequency peak of this mode was dominantly present in the frequency spectrum of an intact egg impacted at its sharp position. The mode shapes related to the first resonant frequency of an egg shelved that the optimum location for the measuring sensor was the 180 degrees position. A optimum location for the egg support was found to be the 90 degrees position having the smallest vibration magnitude.

A Study on the Characteristics of Bearing Capacity for Rammed Aggregate Pier in Sand (사질토지반에서 짧은 쇄석다짐말뚝의 배치형태에 따른 지지력특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Young-Hun;Yoo, Woo-Hyun;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.195-198
    • /
    • 2009
  • Rammed Aggregate Pier method is intermediate foundation of deep and shallow foundation, it has been built on world wide. But the investigation and research in domestic is not accomplished. In this paper, examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from differenciate the spacing of piles, namely installed rammed aggregate pier. Strain control test was conducted to determine the bearing capacities of the piers; 20mm, 30mm and 40mm diameter drilling equipment to drill holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, the space between each piers narrowed, settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, allows greater chances to have resistance to deformation, shows improved stability of structures.

  • PDF

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.