DOI QR코드

DOI QR Code

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC

현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정

  • Seon-Ju Kim (Department of Mechanical Engineering, Korea University of Technology and Education) ;
  • Beom-Joo Lee (Department of Mechanical Engineering, Korea University of Technology and Education) ;
  • Hyeong-Min Yoo (Department of Mechanical Engineering, Korea University of Technology and Education)
  • 김선주 (한국기술교육대학교 기계공학과) ;
  • 이범주 (한국기술교육대학교 기계공학과) ;
  • 유형민 (한국기술교육대학교 기계공학과)
  • Received : 2023.09.20
  • Accepted : 2023.09.30
  • Published : 2023.09.30

Abstract

The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (과제번호 : NRF-2021R1G1A1006606)

References

  1. Hollaway, L. C. (2010). A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and building materials, 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
  2. Frigione, M., & Lettieri, M. (2018). Durability issues and challenges for material advancements in FRP employed in the construction industry. Polymers, 10(3), 247.
  3. Qureshi, J. (2022). A review of fibre reinforced polymer structures. Fibers, 10(3), 27.
  4. Zou, X., Lin, H., Feng, P., Bao, Y., & Wang, J. (2021). A review on FRP-concrete hybrid sections for bridge applications. Composite Structures, 262, 113336.
  5. Mangalgiri, P. D. (1999). Composite materials for aerospace applications. Bulletin of Materials Science, 22, 657-664. https://doi.org/10.1007/BF02749982
  6. Ekuase, O. A., Anjum, N., Eze, V. O., & Okoli, O. I. (2022). A review on the out-of-autoclave process for composite manufacturing. Journal of Composites Science, 6(6), 172.
  7. Razali, N., Mansor, M. R., Omar, G., Kamarulzaman, S. A. F. S., Zin, M. H., & Razali, N. (2021). Out-of-autoclave as a sustainable composites manufacturing process for aerospace applications. In Design for Sustainability (pp. 395-413). Elsevier.
  8. Schinner, G., Brandt, J., & Richter, H. (1996). Recycling carbon-fiber-reinforced thermoplastic composites. Journal of Thermoplastic Composite Materials, 9(3), 239-245. https://doi.org/10.1177/089270579600900302
  9. Yang, J. H., Lin, S. H., & Lee, Y. D. (2012). Preparation and characterization of poly (l-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. Journal of Materials Chemistry, 22(21), 10805-10815. https://doi.org/10.1039/c2jm31312j
  10. Mezzasalma, L., Dove, A. P., & Coulembier, O. (2017). Organocatalytic ring-opening polymerization of L-lactide in bulk: A long standing challenge. European Polymer Journal, 95, 628-634. https://doi.org/10.1016/j.eurpolymj.2017.05.013
  11. Moore, J. C. (1964). Gel permeation chromatography. I. A new method for molecular weight distribution of high polymers. Journal of Polymer Science Part A: General Papers, 2(2), 835-843. https://doi.org/10.1002/pol.1964.100020220
  12. BENOIT, H. C. (1967). Reflections on "A Universal Calibration for Gel Permeation Chromatography," by Z. Grubisic, P. Rempp, and H. Benoit. J. Polym. Sci, 5, 753
  13. Lee, Y. S., Song, S. A., Kim, W. J., Kim, S. S., & Jung, Y. S. (2015). Fabrication and characterization of the carbon fiber composite sheets. Composites Research, 28(4), 168-175, https://doi.org/10.7234/COMPOSRES.2015.28.4.168
  14. Jeong, E. C., Yoon, K. H., Kim, J. S., & Lee, S. H. (2016). A study on the production of carbon fiber composites using injection-molding grade thermoplastic pellets. Transactions of Materials Processing, 25(6), 402-408. https://doi.org/10.5228/KSTP.2016.25.6.402
  15. Shi, J., Mizuno, M., Bao, L., & Zhu, C. (2022). A facile molding method of continuous fiber-reinforced thermoplastic composites and its mechanical property. Polymers, 14(5), 947.
  16. Wang, J., Yuan, Y. Y., & Du, J. Z. (2012). Polyphosphoesters: controlled ring-opening polymerization and biological applications.
  17. Ober, C. K., & Hair, M. L. (1987). The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. Journal of Polymer Science Part A: Polymer Chemistry, 25(5), 1395-1407 https://doi.org/10.1002/pola.1987.080250516
  18. Jang, Y. J., Kim, N. S. R., Kwon, D. J., Yang, S. B., & Yeum, J. H. (2020). Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber.