• 제목/요약/키워드: Defenses

검색결과 161건 처리시간 0.028초

The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion

  • Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제37권5호
    • /
    • pp.415-427
    • /
    • 2021
  • A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

Generative Adversarial Networks: A Literature Review

  • Cheng, Jieren;Yang, Yue;Tang, Xiangyan;Xiong, Naixue;Zhang, Yuan;Lei, Feifei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4625-4647
    • /
    • 2020
  • The Generative Adversarial Networks, as one of the most creative deep learning models in recent years, has achieved great success in computer vision and natural language processing. It uses the game theory to generate the best sample in generator and discriminator. Recently, many deep learning models have been applied to the security field. Along with the idea of "generative" and "adversarial", researchers are trying to apply Generative Adversarial Networks to the security field. This paper presents the development of Generative Adversarial Networks. We review traditional generation models and typical Generative Adversarial Networks models, analyze the application of their models in natural language processing and computer vision. To emphasize that Generative Adversarial Networks models are feasible to be used in security, we separately review the contributions that their defenses in information security, cyber security and artificial intelligence security. Finally, drawing on the reviewed literature, we provide a broader outlook of this research direction.

UNIDROIT 원칙상 채권양도에 의한 국제매매 대금채권의 활용과 그에 관한 법률관계 (Certain Uses of the Assignment of Monetary Rights arising from International Sales Contracts and Legal Relations between Parties under UNIDROIT Principles)

  • 허해관
    • 한국중재학회지:중재연구
    • /
    • 제32권2호
    • /
    • pp.31-53
    • /
    • 2022
  • This paper examines various legal issues related to the assignment of monetary rights under UNIDROIT Principles. To this end, this paper examines the concept and the effects of the assignment of rights, the related legal structure and notice to the obligor, and some uses in practice (II). Then, as a matter of law in the context of the assignment of monetary rights under UNIDROIT Principles, this paper examines what may happen to the legal relationship between the parties and what practical considerations need to be taken by them when the obligor has legal defenses against the assignor, when successive assignments are made by the assignor, when the obligor exercises against the assignee its right of set-off before receiving the notice of assignment, when the assigned right does not exist at the time of the assignment, when any payment is received from the obligor before the notice of assignment is given, and finally when the obligor becomes insolvent or refuses to pay.

Protective effects of red orange (Citrus sinensis [L.] Osbeck [Rutaceae]) extract against UVA-B radiation-induced photoaging in Skh:HR-2 mice

  • Yoon Hee Kim;Cho Young Lim;Jae In Jung ;Tae Young Kim;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.641-659
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The skin is the outermost organ of the human body and plays a protective role against external environmental damages, such as sunlight and pollution, which affect anti-oxidant defenses and skin inflammation, resulting in erythema or skin reddening, immunosuppression, and epidermal DNA damage. MATERIALS/METHODS: The present study aimed to investigate the potential protective effects of red orange complex H extract (ROC) against ultraviolet (UV)-induced skin photoaging in Skh:HR-2 mice. ROC was orally administered at doses of 20, 40, and 80 mg/kg/day for 13 weeks, along with UV irradiation of the mice for 10 weeks. RESULTS: ROC improved UV-induced skin barrier parameters, including erythema, melanin production, transepidermal water loss, elasticity, and wrinkle formation. Notably, ROC inhibited the mRNA expression of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor α) and melanogenesis. In addition, ROC recovered the UV-induced decrease in the hyaluronic acid and collagen levels by enhancing genes expression. Furthermore, ROC significantly downregulated the protein and mRNA expression of matrix metalloproteinases responsible for collagen degradation. These protective effects of ROC against photoaging are associated with the suppression of UV-induced phosphorylation of c-Jun NH2-terminal kinase and activator protein 1 activation. CONCLUSIONS: Altogether, our findings suggest that the oral administration of ROC exerts potential protective activities against photoaging in UV-irradiated hairless mice.

Vaccines development in India: advances, regulation, and challenges

  • Rakshita Salalli;Jyoti Ram Dange;Sonia Dhiman;Teenu Sharma
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권3호
    • /
    • pp.193-208
    • /
    • 2023
  • One of the most significant medical advancements in human history is the development of vaccines. Progress in vaccine development has always been greatly influenced by scientific human innovation. The main objective of vaccine development would be to acquire sufficient evidence of vaccine effectiveness, immunogenicity, safety, and/or quality to support requests for marketing approval. Vaccines are biological products that enhance the body's defenses against infectious diseases. From the first smallpox vaccine to the latest notable coronavirus disease 2019 nasal vaccine, India has come a long way. The development of numerous vaccines, driven by scientific innovation and advancement, combined with researcher's knowledge, has helped to reduce the global burden of disease and mortality rates. The Drugs and Cosmetics Rules of 1945 and the New Drugs and Clinical Trials Rules of 2019 specify the requirements and guidelines for CMC (chemistry, manufacturing, and controls) for all manufactured and imported vaccines, including those against coronavirus infections. This article provides an overview of the regulation pertaining to the development process, registration, and approval procedures for vaccines, particularly in India, along with their brief history.

Adversarial Attacks and Defense Strategy in Deep Learning

  • Sarala D.V;Thippeswamy Gangappa
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.127-132
    • /
    • 2024
  • With the rapid evolution of the Internet, the application of artificial intelligence fields is more and more extensive, and the era of AI has come. At the same time, adversarial attacks in the AI field are also frequent. Therefore, the research into adversarial attack security is extremely urgent. An increasing number of researchers are working in this field. We provide a comprehensive review of the theories and methods that enable researchers to enter the field of adversarial attack. This article is according to the "Why? → What? → How?" research line for elaboration. Firstly, we explain the significance of adversarial attack. Then, we introduce the concepts, types, and hazards of adversarial attack. Finally, we review the typical attack algorithms and defense techniques in each application area. Facing the increasingly complex neural network model, this paper focuses on the fields of image, text, and malicious code and focuses on the adversarial attack classifications and methods of these three data types, so that researchers can quickly find their own type of study. At the end of this review, we also raised some discussions and open issues and compared them with other similar reviews.

Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice

  • Yongun Park;Yunn Me Me Paing;Namki Cho;Changyoun Kim;Jiho Yoo;Ji Woong Choi;Sung Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.309-318
    • /
    • 2024
  • Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid (QA) and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced QA's benefit on the brain, in vivo and in vitro analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated QA's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering QA restored social impairment and LPS-induced spatial and fear memory. In addition, QA inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. QA inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, QA restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.

Enhanced Immune Cell Functions and Cytokine Production after in vitro Stimulation with Arabinoxylans Fraction from Rice Bran

  • Choi, Eun-Mi;Kim, Ah-Jin;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.479-486
    • /
    • 2005
  • Arabinoxylan, a complex polysaccharide in cereal cell walls, has recently received research attention as a biological response modifier. The immunomodulating effect of arabinoxylans from rice bran (AXrb) was studied using a combined process of extrusion and commercial hemicellulase treatment in order to elucidate the augmentation mechanism of cell-mediated immunity in vitro. The cytotoxicity of mouse spleen lymphocytes against YAC-1 tumor cells was significantly enhanced by treatment with AXrb at $10-100\;{\mu}g/mL$. In an attempt to investigate the mechanism by which AXrb enhance NK cytotoxicity, we examined the effect of AXrb on cytokine production by spleen lymphocytes. Culture supernatants of the cells incubated with AXrb were collected and analyzed for IL-2 and IFN-${\gamma}$ synthesis by ELISA. IL-2 and IFN-${\gamma}$ production were increased significantly. These results suggest that AXrb may induce Th1 immune responses. Macrophages play an important role in host defenses against tumors by killing them and producing secretory products, which protect against bacterial, viral infection and malignant cell growth. AXrb were examined for their ability to induce secretory and cellular responses in murine peritoneal macrophages. When macrophages were treated with various concentrations ($10-100\;{\mu}g/mL$) of AXrb, AXrb induced tumoricidal activity, as well as increasing phagocytosis and the production of NO, $H_2O_2$, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results indicate that reactive oxygen species, reactive nitrogen species, and inflammatory cytokines are likely to be the major mediators of tumoricidal activity in AXrb-treated macrophages. Therefore, AXrb may be useful in cancer immunotherapy and it is anticipated that AXrb obtained using extrusion and subsequent enzyme treatment can be used as an ingredient in nutraceuticals and cereal-based functional food.

Th17과 자가면역 관절염 (The Th17 and Autoimmune Arthritis)

  • 조미라;허유정;박진실;이선영;성영철;김호연
    • IMMUNE NETWORK
    • /
    • 제7권1호
    • /
    • pp.10-17
    • /
    • 2007
  • Autoimmune arthritis, such as rheumatoid arthritis (RA), is a chronic inflammatory disorder that primarily affects the joints and then results in their progressive destruction. Effector Th cells have been classified as Th1 and Th2 subsets based on their cytokine expression profiles and immune regulatory function. Another subset of T cells termed Th17 was recendy discovered and known to selectively produce IL-17. Also, Th17 was shown to be generated by TGF${\beta}$ and IL-6 and maintained by IL-23. IL-17 is a proinflammatory cytokine that is considered to involve the development of various inflammatory autoimmune diseases such as RA, asthma, lupus, and allograft rejection. IL-17 is present in the sera, synovial fluids and synovial biopsies of most RA patient. IL-17 activates RA synovial fibroblasts to synthesize IL-6, IL-8 and VEGF via PI3K/Akt and NF-${\kappa}B$ dependent pathway. IL-17 increases IL-6 production, collagen destruction and collagen synthesis. In addition, it not only causes bone resorption but also increases osteoclastogenesis and fetal cartilage destruction. Inhibition of the IL-17 production may contribute a novel therapeutic approach along with potent anti-inflammatory effect and with less immunosuppressive effect on host defenses.