• Title/Summary/Keyword: Defense Model

Search Result 1,792, Processing Time 0.028 seconds

Research of Application and Facilitation of BIM on Military Facilities (국방 군사시설의 BIM적용 및 활성화 방안 연구)

  • Gong, Keum-Rok
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Since its beginning the military has continued updating its equipments and facilities by modernizing and expanding them. However, with rapidly growing technologies and business management skills, the time for military facilities' evolvement seems unavoidable. The Defense Installations Agency (DIA) has come to a conclusion that application of BIM is necessary. Since its decision, the DIA has been researching the use of BIM and developing guidelines for its application. Nevertheless, the speed of instructions and practical implementation of its model have been behind its plan due to various reasons. To overcome its limitations, the DIA has come up with three-step-solution: basic experience, budgeting, and expansion. Due to numerous number of projects of BIM, it is almost impractical to implement all of them concurrently. The methodological approach of the research employs the Delphi survey method to quantitatively analyze qualitative information drawn from experts' opinions. By applying the Delphi survey method, the first round of the survey drew lists of constraints, BIM application scenarios as well as BIM promotion measures. Afterwards, at the second round of the survey, criticality of each item collected at the 1st round was analyzed to reach a conclusion. Finally, constraints against BIM application were analyzed, and BIM application scenarios and promotion measures for the BIM were introduced.

Development of a Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템 개발)

  • Seo, Mun-Seok;Heo, Geon-Su;Hong, Dae-Geon;Lee, Chun-Ho;Choe, Pil-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1678-1683
    • /
    • 2001
  • The mobility of tracked vehicles is mainly influenced by the interaction between tracks and soil, so that the characteristics of their interactions are quite important fur the tracked vehicle study. In particular, the track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to prevent the peal-off of tracks from the road-wheels, the Dynamic Track Tensioning System (DTTS) which maintains the optimum track tension throughout the maneuver is required. It consists of track tension monitoring system, track tension controller and hydraulic system. In this paper, a dynamic track tensioning system is developed for tracked vehicles which are subject to various maneuvering tasks. The track tension is estimated based on the idler assembly model. Using the monitored track tension and con sidering the highly nonlinear hydraulic units, fuzzy logic controllers are designed in order to control the track tension. The track tensioning performance of the proposed DTTS is verified through the simulation of the Multi -body Dynamics tool.

Basic Design System Centered on Product Structure for Improvement of Naval Ship Acquisition Systems (함정 획득시스템 개선을 위한 제품구조 중심의 기본설계시스템)

  • Oh, Dae-Kyun;Min, Young-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.215-221
    • /
    • 2011
  • To improve the naval ship acquisition process, systems engineering, modeling and simulation, etc. have been introduced, and there has been ongoing research on acquisition systems for effective support of it. However, due to characteristics of the naval ship acquisition process, development process mainly carried out at a shipyard such as basic design, detailed design, construction and test is difficult to integrate with the acquisition systems of IPT(Integrated Project Team). In addition, research aimed to improve this is rather lacking. In this paper, the naval ship product structure concept proposed in previous research was applied to the basic design system at shipyard, and basic research for expanding the coverage of naval ship acquisition systems to the basic design phase is performed. A data structure of modeling system appropriate to the basic design phase was proposed through research findings and the prototype system based on it was implemented.

Meta-Model Transformations for Efficient Storing DDS Topics (효율적인 DDS 토픽 저장을 위한 메타 모델 변환 방법)

  • Lee, Hyun-Woo;Yim, Hyung-Jun;Choi, Hoon;Kim, Jum-Su;Lee, Kyu-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.123-126
    • /
    • 2011
  • 최근 전투체계는 동시에 다수의 장비들 사이에 실시간으로 데이터를 전달해야 하는데, 이러한 특성을 만족하는 통신 미들웨어로서 OMG (Object Management Group)에서 정의한 데이터 분배 서비스 (DDS ; Data Distribution Service)가 적합하다. 이를 구현한 DDS 시스템에는 RTI의 NDDS, PrismTech의 OpenSplice, 충남대학교의 ReTicom 등이 있다. 이 중 NDDS와 OpenSplice는 데이터의 영속성을 지원하지만 ReTicom에서는 영속성을 아직 지원하지 못한다. 이를 해결함과 동시에 실시간성을 보장하기 위해서 ReTicom은 메인 메모리 기반의 객체 관계형 데이터베이스를 사용하여 구현중이다. 이를 위해서는 DDS의 객체 모델 데이터를 정의하는 IDL과 객체 관계형 데이터베이스의 데이터 타입 및 구조 등이 동일하지 않기 때문에 IDL과 객체 관계형 데이터베이스간의 데이터 타입 및 구조를 변환하는 메타 모델 변환 방법이 제공되어야 한다. 본 논문에서는 이러한 메타 모델 변환 방법을 해결하고자 IDL을 구조파악이 쉬운 XML 스키마로 변환 후 이를 객체 관계형 데이터베이스의 데이터 타입 및 구조 형태로 변환 해주는 방법을 제안한다.

Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel (함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석)

  • Park, Hyoung Hun;Hwang, Yang Jin;Lee, Kyu Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.

An Experimental Study of Fuselage Drag and Stability Characteristics of a Helicopter Configuration (회전익 항공기 형상의 기체공력 특성에 관한 실험적 연구)

  • Oh, Se-Yoon;Park, Keum-Yong;Lee, Jong-Geon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.9-15
    • /
    • 2005
  • This paper describes the test carried out on an experimental study of fuselage drag and stability characteristics of a helicopter configuration and the test techniques developed for the testing and the lessons learned in the Agency for Defense Development Low Speed Wind Tunnel(ADD-LSWT). The main objective of this test is to determine the drag and stability characteristics of helicopter configurations according to the various configuration changes. The fuselage model with a highly modular structure is a representation of 1:8 scale of the external contour of the conceptual design helicopter configuration with rotating main rotor hub including blade stubs capable of rotating up to 500 rpm. The test results are compared with the available similar data and fair to good agreement is obtained.

Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials (메타물질 및 전파흡수체를 적용한 함정의 레이다 반사면적 해석)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.737-743
    • /
    • 2015
  • This paper are mainly focusing on the facts influencing on RCS reductions, appling radar absorbing materials by using RCS contributions of elements and appling a metamaterials which is high-tech radar absorbing materials. RCS analysis results are given for a simplified ship model, with radar absorbing materials and metamaterials cause RCS reduction in terms of mean values.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.