• Title/Summary/Keyword: Deep web

Search Result 266, Processing Time 0.026 seconds

A Framework of Cross-Language Social Learning System (교차언어의 사회적 학습 시스템 프레임 워크)

  • Hao, Fei;Park, Doo-Soon;Lee, Hye-Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1736-1739
    • /
    • 2015
  • Social learning encourages and enables learners with common interests to communicate and share knowledge with others through social networks. However, social learning suffers a barrier on communication among learners with various la nguage and culture background. Aiming to avoid this barrier, this paper proposes a framework of cross-language s ocial learning system which can involve more learners' participation on the web. With this framework, an illustrati ve example of task-oriented collaborative learning paradigm is elaborated. It is expected that our proposed system can stimulate more learners to share the learning resource for deep discussions as well as to promote the knowled ge innovation.

A Survey of Arabic Thematic Sentiment Analysis Based on Topic Modeling

  • Basabain, Seham
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.155-162
    • /
    • 2021
  • The expansion of the world wide web has led to a huge amount of user generated content over different forums and social media platforms, these rich data resources offer the opportunity to reflect, and track changing public sentiments and help to develop proactive reactions strategies for decision and policy makers. Analysis of public emotions and opinions towards events and sentimental trends can help to address unforeseen areas of public concerns. The need of developing systems to analyze these sentiments and the topics behind them has emerged tremendously. While most existing works reported in the literature have been carried out in English, this paper, in contrast, aims to review recent research works in Arabic language in the field of thematic sentiment analysis and which techniques they have utilized to accomplish this task. The findings show that the prevailing techniques in Arabic topic-based sentiment analysis are based on traditional approaches and machine learning methods. In addition, it has been found that considerably limited recent studies have utilized deep learning approaches to build high performance models.

Real-time video Surveillance System Design Proposal Using Abnormal Behavior Recognition Technology

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • The surveillance system to prevent crime and accidents in advance has become a necessity, not an option in real life. Not only public institutions but also individuals are installing surveillance cameras to protect their property and privacy. However, since the installed surveillance camera cannot be monitored for 24 hours, the focus is on the technology that tracks the video after an accident occurs rather than prevention. In this paper, we propose a system model that monitors abnormal behaviors that may cause crimes through real-time video, and when a specific behavior occurs, the surveillance system automatically detects it and responds immediately through an alarm. We are a model that analyzes real-time images from surveillance cameras and uses I3D models from analysis servers to analyze abnormal behavior and deliver notifications to web servers and then to clients. If the system is implemented with the proposed model, immediate response can be expected when a crime occurs.

Theories, Frameworks, and Models of Using Artificial Intelligence in Organizations

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.357-366
    • /
    • 2022
  • Artificial intelligence (AI) is the replication of human intelligence by computer systems and machines using tools like machine learning, deep learning, expert systems, and natural language processing. AI can be applied in administrative settings to automate repetitive processes, analyze and forecast data, foster social communication skills among staff, reduce costs, and boost overall operational effectiveness. In order to understand how AI is being used for administrative duties in various organizations, this paper gives a critical dialogue on the topic and proposed a framework for using artificial intelligence in organizations. Additionally, it offers a list of specifications, attributes, and requirements that organizations planning to use AI should consider.

Analysis of Impact Between Data Analysis Performance and Database

  • Kyoungju Min;Jeongyun Cho;Manho Jung;Hyangbae Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2023
  • Engineering or humanities data are stored in databases and are often used for search services. While the latest deep-learning technologies, such like BART and BERT, are utilized for data analysis, humanities data still rely on traditional databases. Representative analysis methods include n-gram and lexical statistical extraction. However, when using a database, performance limitation is often imposed on the result calculations. This study presents an experimental process using MariaDB on a PC, which is easily accessible in a laboratory, to analyze the impact of the database on data analysis performance. The findings highlight the fact that the database becomes a bottleneck when analyzing large-scale text data, particularly over hundreds of thousands of records. To address this issue, a method was proposed to provide real-time humanities data analysis web services by leveraging the open source database, with a focus on the Seungjeongwon-Ilgy, one of the largest datasets in the humanities fields.

Development of integrated data augmentation automation tools for deep learning (딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발)

  • Jang, Chan-Ho;Lee, Seo-Young;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

Performance Comparison Analysis of Deep Learning-based Web Application Services on Cloud Platforms (클라우드 플랫폼에서의 딥러닝 기반 웹 어플리케이션 서비스 성능 비교 분석)

  • Kim, Ju-Chan;Bum, Junghyun;Choo, Hyun-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.224-226
    • /
    • 2021
  • 최근 코로나바이러스감염증-19(COVID-19)가 확산됨에 따라 화상회의, 온라인 게임, 스트리밍 등과 같은 다양한 온라인 서비스들의 트래픽이 크게 증가하면서 원활한 서비스 제공을 위한 서버 자원 관리의 중요성이 강조되고 있다. 이에 따라 서버 자원을 전문적으로 관리해주는 클라우드 서비스의 수요도 증가하는 추세이다. 하지만 대다수의 국내 기업들은 성능의 불확실성, 보안, 정서적 이질감 등을 이유로 클라우드 서비스 도입에 어려움을 겪고 있다. 따라서 본 논문에서는 클라우드 서비스의 성능의 불확실성을 해소하기 위해 클라우드 시장 BIG3 기업(아마존, 마이크로소프트, 구글)의 클라우드 서비스의 성능을 비교하였다.

Crawling Analysis Implementation of Cyber Crime Information in Deep Web Environment (딥웹 환경에서 사이버범죄 정보 수집분석 구현)

  • Hwang, Deok-Hyun;Park, So-Young;Bae, Ji-Seon;Jeong, Song-Ju;Hong, Jin-Keun;Park, Hyun-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.390-392
    • /
    • 2020
  • 본 논문에서는 딥웹 환경에서 사이버 범죄 활동에 대한 정보를 중심으로 분석한다. 분석된 정보는 사이버 수사기관에 범죄 분석을 위한 보조정보로 활용될 수 있도록 지원하는 것과 청소년들의 사이버 범죄에 대한 위중성 및 범법성을 인지시키기 위한 교육을 목적으로 활용될 수 있도록 연구되었다. 따라서 본 논문에서는 크롤링, 파싱, 시각화 3가지 과정을 기반으로 딥웹 환경에서 활동하고 있는 정보를 키워드를 중심으로 수집하고 분석하는 솔루션 환경을 구현하였다. 분석된 정보는 사이버에서 일어나는 많은 범죄활동 가운데 가장 일어나기 쉬운 범죄 유형과 주의 깊게 수사가 이루어져야 할 범죄들을 정리하며, 수사의 방향성을 캐치 할 수 있도록 지원하는 기능을 포함한다.

Web Application for Creating Emotional ID Photos using Deep Learning (딥러닝을 활용한 감성 증명사진 제작 웹 애플리케이션)

  • Kim, Do Young;Kang, In Yeong;Kim, Yeon Su;Park, Goo man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1261-1264
    • /
    • 2022
  • 최근 본인에게 어울리는 색상을 배경으로 촬영하는 감성 증명사진이 유행하고 있다. 개인마다 퍼스널 컬러를 찾아 배경색에 적용하는 것은 시간, 비용, 인력적으로 어려움이 있으므로 자동으로 개인에 따른 배경색을 찾아서 사진을 합성하여 감성 증명사진을 제작해 주는 딥러닝 기반 시스템을 구축하였다. 본 논문에서는 Convolution Neural Network 를 기반으로 한 딥러닝 기술을 이용해 Image Matting 과 Multi-Label Classification 을 수행하여 기존 감성 증명사진들을 학습하여 모델을 구축하였으며, 해당 시스템으로 사용자에게 새로운 배경색이 적용된 감성 증명사진을 제공하는 웹 애플리케이션을 제안한다.

  • PDF

A Reliable Problem Trading Web Platform Using NFT Blockchain and Deep Learning (NFT 블록체인과 딥러닝을 활용한 신뢰성 있는 문제 거래 웹 플랫폼)

  • Byung-Ook Ryu;Eun-Hye Gwon;Ji-Ho Shin;Dong-Ju Jung;Byung-Jeong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.318-319
    • /
    • 2023
  • 본 연구에서는 다양한 문제들을 ELECTRA를 통해 문제의 유형을 분류하고, 그것을 기존의 문제들과 유사도 평가를 진행하여 문제의 표절 여부를 확인한다. 유일성이 입증된 문제는 이더리움 기반의 블록체인을 사용하여 NFT 기술을 통해 문제를 NFT로 발행하여 거래한다. 최종적으로 표절하지 않았음이 검증된 문제를 NFT를 통해 거래함으로써 문제의 저작권 및 권리를 웹 플랫폼을 통해 거래할 수 있도록 한다. 본 논문에서는 이러한 문제 거래 웹 플랫폼 설계를 기술하며, 본 플랫폼은 문제를 쉽게 거래할 수 있도록 지원하여 문제 거래 활성화에 기여할 것이다.