• Title/Summary/Keyword: Deep residual networks

Search Result 51, Processing Time 0.021 seconds

Single Image Super Resolution Reconstruction Based on Recursive Residual Convolutional Neural Network

  • Cao, Shuyi;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.98-101
    • /
    • 2019
  • At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.

  • PDF

Hybrid Tensor Flow DNN and Modified Residual Network Approach for Cyber Security Threats Detection in Internet of Things

  • Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.237-245
    • /
    • 2022
  • The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

No-Reference Sports Video-Quality Assessment Using 3D Shearlet Transform and Deep Residual Neural Network (3차원 쉐어렛 변환과 심층 잔류 신경망을 이용한 무참조 스포츠 비디오 화질 평가)

  • Lee, Gi Yong;Shin, Seung-Su;Kim, Hyoung-Gook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1447-1453
    • /
    • 2020
  • In this paper, we propose a method for no-reference quality assessment of sports videos using 3D shearlet transform and deep residual neural networks. In the proposed method, 3D shearlet transform-based spatiotemporal features are extracted from the overlapped video blocks and applied to logistic regression concatenated with a deep residual neural network based on a conditional video block-wise constraint to learn the spatiotemporal correlation and predict the quality score. Our evaluation reveals that the proposed method predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.

Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks (딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석)

  • Bae, Ji-Hoon;Yim, Junho;Yu, Jaehak;Kim, Kwihoon;Kim, Junmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2017
  • In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.

Residual Learning Based CNN for Gesture Recognition in Robot Interaction

  • Han, Hua
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.385-398
    • /
    • 2021
  • The complexity of deep learning models affects the real-time performance of gesture recognition, thereby limiting the application of gesture recognition algorithms in actual scenarios. Hence, a residual learning neural network based on a deep convolutional neural network is proposed. First, small convolution kernels are used to extract the local details of gesture images. Subsequently, a shallow residual structure is built to share weights, thereby avoiding gradient disappearance or gradient explosion as the network layer deepens; consequently, the difficulty of model optimisation is simplified. Additional convolutional neural networks are used to accelerate the refinement of deep abstract features based on the spatial importance of the gesture feature distribution. Finally, a fully connected cascade softmax classifier is used to complete the gesture recognition. Compared with the dense connection multiplexing feature information network, the proposed algorithm is optimised in feature multiplexing to avoid performance fluctuations caused by feature redundancy. Experimental results from the ISOGD gesture dataset and Gesture dataset prove that the proposed algorithm affords a fast convergence speed and high accuracy.

Real-world noisy image denoising using deep residual U-Net structure (깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징)

  • Jang, Yeongil;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

Enhanced 3D Residual Network for Human Fall Detection in Video Surveillance

  • Li, Suyuan;Song, Xin;Cao, Jing;Xu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3991-4007
    • /
    • 2022
  • In the public healthcare, a computational system that can automatically and efficiently detect and classify falls from a video sequence has significant potential. With the advancement of deep learning, which can extract temporal and spatial information, has become more widespread. However, traditional 3D CNNs that usually adopt shallow networks cannot obtain higher recognition accuracy than deeper networks. Additionally, some experiences of neural network show that the problem of gradient explosions occurs with increasing the network layers. As a result, an enhanced three-dimensional ResNet-based method for fall detection (3D-ERes-FD) is proposed to directly extract spatio-temporal features to address these issues. In our method, a 50-layer 3D residual network is used to deepen the network for improving fall recognition accuracy. Furthermore, enhanced residual units with four convolutional layers are developed to efficiently reduce the number of parameters and increase the depth of the network. According to the experimental results, the proposed method outperformed several state-of-the-art methods.

Movie Box-office Prediction using Deep Learning and Feature Selection : Focusing on Multivariate Time Series

  • Byun, Jun-Hyung;Kim, Ji-Ho;Choi, Young-Jin;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.35-47
    • /
    • 2020
  • Box-office prediction is important to movie stakeholders. It is necessary to accurately predict box-office and select important variables. In this paper, we propose a multivariate time series classification and important variable selection method to improve accuracy of predicting the box-office. As a research method, we collected daily data from KOBIS and NAVER for South Korean movies, selected important variables using Random Forest and predicted multivariate time series using Deep Learning. Based on the Korean screen quota system, Deep Learning was used to compare the accuracy of box-office predictions on the 73rd day from movie release with the important variables and entire variables, and the results was tested whether they are statistically significant. As a Deep Learning model, Multi-Layer Perceptron, Fully Convolutional Neural Networks, and Residual Network were used. Among the Deep Learning models, the model using important variables and Residual Network had the highest prediction accuracy at 93%.