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Abstract 
 
At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. 

Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear 

mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of 

memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image 

super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural 

networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the 

proposed method improved image qualities that occur in previous methods. 

 
1. Introduction 

 
Single-image super-resolution is one of the classic computer vision 

problems, meaning to restore low-resolution images to high-resolution 

images. At present, this technology is widely used in various fields such 

as medical ultrasound imaging, surveillance video, and satellite remote 

imaging. 

In recent years, the existing super-resolution technologies are mainly 

divided into interpolation-based [2], reconstruction-based [4], and 

learning-based super-resolution [1]. The most popular super-resolution 

algorithm is learning-based super-resolution, and the image is 

reconstructed by training relationships of mapping between low-

resolution images and high-resolution images. 

Among them, Dong et al. [3] have demonstrated that a convolutional 

neural network (CNN) can be used to super-resolution (SRCNN). They 

use a three-layer convolutional neural network to learn the nonlinear 

mapping between low-resolution images and high-resolution images. The 

results of this method are significantly better than the traditional non-deep 

learning algorithms. Since then, CNN has been widely used in super-

resolution methods. However, since the model uses the shallow neural 

network to directly learn the original mapping function, the image 

restoration quality is still not satisfied. Then, in 2016, Kim et al. [5] use 

20 convolution layers and the global residual method to learn the feature, 

and the method accelerates the convergence speed of very deep networks 

(VDSR). The image reconstruction quality is greatly improved. Since 

then, many researchers use deeper layers to improve performance, but as 

the number of network layers deepens, not only does the occupied memory 

increase, but the calculation is more complicated. 

We construct a recursive residual network model to build a more 

compact network. Specifically, the main advantages of this paper are: 1) 
Introduce local residual network and global residual network to learn and 

transmit more image information. 2) Use local residual learning to avoid 

information disappearing in deep network architectures 3) Make model 

more compact by using the recursive structure to share parameters. 4) 
Generate multi-scale super-resolution images using multi-scale image 

training. 

 

2. Related work 
 
2.1 SRCNN  

 
Figure 1. Model structure of SRCNN. 

 
In [3], Model SRCNN consists of three layers: patch extraction and 

representation, nonlinear mapping, and reconstruction. Figure 1 shows the 

model structure of SRCNN. Compared with the traditional non-deep 

learning algorithm, the final image has been greatly improved. But 

because the SRCNN layer is very shallow, the learning ability is very 

limited and the effect is not satisfactory. 

2.2 ResNet  
 

Figure 2. Model structure of the residual block. 

 
Figure 2 shows the model structure of residual block. The residual 

block has two weight layers. Each weight layer contains a convolution 

layer and a batch normalization layer (BN). These are represented as 

follows: 



2019 년 한국방송·미디어공학회 하계학술대회 

𝐹(𝑥, 𝑊) = 𝑊2𝛿(𝑊1𝑥).               (1) 

 
The residual network (ResNet) [7] learns the residual function 

according to the input, making the training of the deep network simpler. 

The residual block structure is 

 
�̂� = 𝑈(𝑥) = 𝛿(𝐹(𝑥, 𝑊) + 𝑥),           (2) 

 
where �̂� is the output of the residual block, 𝑈(𝑥) is the residual block 

function, 𝑊 is the network weight, 𝐹(𝑥, 𝑊) is the learned residual map, 

𝛿 is the activation function Relu function. Residual block directs shallow 

layer data directly into the deep layer by adding a connection. It can avoid 

data disappearing during the transfer process. 
 
2.3 VDSR 

 
Figure 3. Model structure of VDSR. 

 
In [5], VDSR uses 20 convolution layers to significantly improve 

image training accuracy. Referring to the ResNet [7] network, VDSR uses 

a global residual learning structure in the network. One of the advantages 

is that the gradient disappearance and explosion can be avoided by 

adjustable gradient clipping. However, deep networks require a lot of 

parameters, which requires more storage space than the recursive 

parameter model structure. 

 

 

3. Method 

 
The deep network structure and multiple secondary associations 

generate a lot of parameters to occupy the storage space. For solving this 

problem, a recursive residual network is proposed in this paper. The 

recursive structure is to avoid introducing new parameters while stacking 

more layers. And it saves memory space. It's like using the same layer 

again and again. Local residuals and global residuals are more conducive 

to the transmission and learning of information. 

As shown in Figure 4, first, the network interpolates and extracts 

features from low resolution images. After using a recursive residual 

structure for nonlinear mapping, it performs super-resolution image 

reconstruction. 

We refer to the main idea of ResNet [7] and construct a residual block 

structure with three convolutional layers. First, the image features are 

extracted by a convolution layer. Then after passing each residual block, 

we add the feature image extracted from the first convolutional layer. by 

doing so, we keep the branch inputs of the residuals consistent. More 

image information is transmitted to the deep network. 

The function of the residual network is 

 
𝐻𝑚 = 𝑅(𝐻𝑚−1) = 𝐹(𝐻𝑚−1 , 𝑊) + 𝐻0 ,        (3)     

 

Figure 4. Proposed algorithm flowchart. 

 
where 𝐻𝑚   is the output of the m-th residual block, 𝑅  is the residual 

block function, 𝐹(𝐻𝑚−1, 𝑊) is the learned residual map, and 𝐻0 is the 

feature image that is output through the first convolution layer. 

We use a recursive structure to control the number of parameters, 

which means that the weight parameters between the residual blocks are 

shared. The above function formula can also be written as: 

 
𝐻𝑚 = 𝑅(𝑚)(𝐻0) = 𝑅(𝑅 … 𝑅(𝑅(𝐻0)) … ).        (4) 

 
4. Experiment  

 
The number of convolution layers is the same as that of VDSR [5], 

which is 20 layers. The first layer operates on the input bicubic image, and 

the last layer is used for high-resolution image reconstruction by a filter 

of size 3 × 3 . Except the last layer, every layer has 64 filters of size 

3 × 3. Each residual block consists of three convolution layers in each 

residual block, for a total of six residual blocks. 

 
4.1 Experimental details 

Training images are 91 images of Yang et al [8], and we rotate these 

images by 90° ,  180° ,  270°  and flip them to make data enhanced. In 

theory, the larger the data set, the better the training effect. Then, we also 

use scale augmentation to train, the image with different scales 

(× 2,× 3,× 4) are added to the training set. We change the recursion and 

residuals, and test with the Set5 [9] test set. And the results are shown in 

the following table. It can be seen from Table 1 that residual learning can 

transmit more image information to the deep layer of the network, and the 

recursive structure can improve the image performance while reducing the 

number of parameters.  
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Table 1. Effect of residual and recursive structure on experimental results. 

 

In the experiment, the images are split into 41 × 41  patches, the 

stride step size is 41, the image batch size is 16, the momentum parameter 

is 0.9, the initial learning rate is 0.1, the weight decay is 0.0001, the 

learning rate decreased to 1/10 every 10 epochs, and the learning is 

stopped after 50 epochs. 

The activation function is Relu and the loss function is mean square 

error (MSE). 

 
L =

1

𝑁
∑ ‖𝑟 − 𝑓(𝑥)‖2𝑁

𝑖=1 ,               (5) 

 
where 𝑥 is interpolated low-resolution image and y is the original high-

resolution image. We proposed to learn 𝑓 that predicts values �̂� = 𝑓(𝑥). 

And the residual image r = y − x . Because the output image and the 

input image are largely similar, we only need to calculate the residual 

image, which will take up less memory. 

 
4.2 Experimental result 

The training set is the same as the above experiment, both are 91-

image training sets [8]. The test used five images of Set5 [9] test set, 

fourteen images of the Set14 [10] test set.  

 
Table 2. Average PSNR of various SISR DL methods for scale factor 2,3 
and 4 on Set5, Set14. 

 
Training data preparation in the experiment is obtained from the 

Matlab implementation. We used PyTorch1.0.1 and Python3.6 for training 

and testing. Training takes about 10 hours on an NVIDIA GeForce GTX 

960 GPU. 

Table 2 provides a comparison of the PSNR values of the proposed 

method with the Bicubic, SRCNN [3], VDSR [5] methods. Among them, 

Bicubic and the SRCNN results from the reference paper [5]. And the 

VDSR result is our retest based on the 91-image training set [8]. It can be 

seen from Table 2 that the quality of our reconstructed image is 

significantly improved compared with other deep-learning (DL) methods. 

 
Figure 5. Results of “butterfly” (Set5) with scale factor ×2. 

 

 

 
Figure 6. Results of “comic” (Set14) with scale factor ×2. 

 
Figure 5 and Figure 6 show the image comparison results with the 

above DL methods. By magnifying the details of the image, we can easily 

compare the image reconstruction quality.  

 

 

5. Conclusion  
 

We propose a deep recursive residual network structure, which uses 

both global residual learning and local residual learning. And we add 

recursive structure to control the number of parameters. It can make the 

occupied space less and the calculation difficulty is relatively reduced. The 

experimental results show that compared with several typical super-

resolution image reconstruction methods, the performance of the proposed 

structural model is better.  

 

 

structure PSNR 

Residual Recursive Scale=2 Scale=3 Scale=4 

X X 35.51 32.53 30.42 

O X 36.68 32.95 30.69 

O O 37.42 33.66 31.38 

Dataset Scale Bicubic SRCNN  VDSR  Ours 

Set5 
× 2 33.66 36.66 37.39 37.42 
× 3 30.39 32.75 33.58 33.66 
× 4 28.42 30.48 31.26 31.38 

Set14 
× 2 30.24 32.42 32.89 32.89 
× 3 27.55 29.28 29.72 29.74 
× 4 26.00 27.49 27.92 27.97 



2019 년 한국방송·미디어공학회 하계학술대회 

Acknowledgements 

This work was supported by the Brain Korea 21 plus Project in 2014. 

 

 

References 

[1] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-

resolution,” IEEE Computer graphics and Applications 2, pp. 56–65, 

2002. 

[2] K. Jensen and D. Anastassiou, “Subpixel edge localization and the 

interpolation of still images,” IEEE transactions on Image 

Processing 4.3, pp. 285–295, 1995. 

[3] C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional 

network for image super-resolution,” European conference on 

computer vision, pp. 184–199, 2014. 

[4] S. Borman and R. Stevenson, “Spatial resolution enhancement of 

low-resolution image sequences-a comprehensive review with 

directions for future research,” Lab. Image and Signal Analysis, 

University of Notre Dame, Tech. Rep, 1998. 

[5] J. Kim, J. Lee, and K. Lee, “Accurate image super-resolution using 

very deep convolutional networks,” in Proceedings of the IEEE 

conference on computer vision and pattern recognition, pp. 1646–

1654, 2016. 

[6] J. Kim, J. Lee, and K. Lee, “Deeply-recursive convolutional network 

for image super-resolution,” in Proceedings of the IEEE conference 

on computer vision and pattern recognition, pp. 1637–1645, 2016. 

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 

image recognition,” in Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp. 770–778, 2016. 

[8] J. Yang, J. Wright, and T. Huang, “Image super-resolution via sparse 

representation,” IEEE transactions on image processing, pp. 2861–

2873, 2010. 

[9] M. Bevilacqua, A. Roum, and C. Guillemot, “Low-complexity 

single-image super-resolution based on nonnegative neighbor 

embedding,” in Proc. Brit. Mach. Vis. Conf, pp. 1–10, 2012. 

[10] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using 

sparse-representations,” International conference on curves and 

surfaces. Springer, Berlin, Heidelberg, pp. 711–730, 2010. 

 




