Lin, Fuqiang;Ma, Xingkong;Chen, Yaofeng;Zhou, Jiajun;Liu, Bo
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3168-3186
/
2020
Automatic topic essay generation (TEG) is a controllable text generation task that aims to generate informative, diverse, and topic-consistent essays based on multiple topics. To make the generated essays of high quality, a reasonable method should consider both diversity and topic-consistency. Another essential issue is the intrinsic link of the topics, which contributes to making the essays closely surround the semantics of provided topics. However, it remains challenging for TEG to fill the semantic gap between source topic words and target output, and a more powerful model is needed to capture the semantics of given topics. To this end, we propose a pretraining-based contextual self-attention (PC-SAN) model that is built upon the seq2seq framework. For the encoder of our model, we employ a dynamic weight sum of layers from BERT to fully utilize the semantics of topics, which is of great help to fill the gap and improve the quality of the generated essays. In the decoding phase, we also transform the target-side contextual history information into the query layers to alleviate the lack of context in typical self-attention networks (SANs). Experimental results on large-scale paragraph-level Chinese corpora verify that our model is capable of generating diverse, topic-consistent text and essentially makes improvements as compare to strong baselines. Furthermore, extensive analysis validates the effectiveness of contextual embeddings from BERT and contextual history information in SANs.
본 연구에서는 나날이 발전하는 카메라의 해상도 기술과 SNS의 이미지 공유를 통해서 고해상도로 찍은 이미지를 손쉽게 구할 수 있고, 이미지를 통해서 사람의 손가락 지문을 손쉽게 채취하여 이를 악용할 수 있다는 가능성을 고려해 이를 방지하는 기술을 제시한다. 이 기술을 개발하기 위해서는 Python 언어를 이용한 Opencv와 opencv안의 Blur 처리를 해주는 라이브러리 등을 사용한다. 우선 이미지에서 손을 찾아주기 위해서 딥러닝 기반의 학습된 Hand Key point Detection 알고리즘을 사용한다. 이 알고리즘을 이용해 손가락 마디를 찾아 이 마디의 좌표를 이용해 이미지에서의 손가락 지문 부위만을 따로 blur 처리를 해줌으로써 원본 이미지에서의 손상을 최소화하면서 손가락 지문을 보호할 수 있다. 향후 정확한 손가락 추적 알고리즘의 개발로 스마트폰 카메라 app의 내부 옵션으로 사용하여 고해상도의 이미지에서의 지문을 보호할 수 있을 것이다.
본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.
순환신경망은 순차적이거나 길이가 가변적인 데이터에 적합한 딥러닝 모델이다. LSTM은 순환신경망에서 나타나는 기울기 소멸문제를 해결함으로써 시퀀스 구성 요소간의 장기의존성을 유지 할 수 있다. 본 논문에서는 LSTM에 기반한 언어모델을 구성하여, 불완전한 한국어 문장이 입력으로 주어졌을 때 뒤 이어 나올 단어들을 예측하여 완전한 문장을 생성할 수 있는 방법을 제안한다. 제안된 방법을 평가하기 위해 여러 한국어 말뭉치를 이용하여 모델을 학습한 다음, 한국어 문장의 불완전한 부분을 생성하는 실험을 진행하였다. 실험 결과, 제시된 언어모델이 자연스러운 한국어 문장을 생성해 낼 수 있음을 확인하였다. 또한 문장 최소 단위를 어절로 설정한 모델이 다른 모델보다 문장 생성에서 더 우수한 결과를 보임을 밝혔다.
Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
분석과학
/
제33권2호
/
pp.98-107
/
2020
Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.
본 논문에서는 머리카락과 모자 영역의 마스크 정보를 활용하여 더 자연스러운 얼굴 속성 편집(facial attribute editing)을 수행하는 모델을 제안한다. 최신 얼굴 속성 편집 연구인 STGAN은 다중 얼굴 속성을 자연스럽게 편집하는 성과를 보였다. 그러나 머리카락과 관련된 속성을 편집할 때 부자연스러운 결과를 생성할 수 있다. 제안하는 방법의 핵심 아이디어는 기존 모델에서 부족했던 얼굴 영역의 정보를 모델에 추가로 반영하는 것이다. 이를 위해 세 가지 아이디어를 적용한다. 첫째로 마스크를 통해 머리카락 면적 속성을 추가하여 머리카락 정보를 보완한다. 둘째로 순환 일관성 손실(cycle consistency loss)을 추가하여 영상의 불필요한 변화를 억제한다. 셋째로 모자 분할 신경망을 추가하여 모자 영역 왜곡을 방지한다. 정성적 평가를 통해 제안하는 방법 적용 여부에 따른 유효성을 평가 및 분석한다. 실험 결과에서 제안하는 방법이 머리카락 및 얼굴 영역을 더 자연스럽게 생성하고, 모자 영역의 왜곡을 성공적으로 방지했다.
심전도 신호는 시간 및 환경 변화에 따라 측정되는 시계열 데이터로 매번 등록 데이터와 동일한 크기의 비교 데이터를 취득해야 하는 문제점이 발생한다. 본 논문에서는 신호 크기 부적합 문제를 해결하기 위해 가상 생체신호 생성을 위한 보조 분류기 기반 적대적 생성 신경망(Auxiliary Classifier Generative Adversarial Networks)의 네트워크 모델을 제안한다. 생성된 가상 생체신호의 유사성을 확인하기 위해 코사인 각도와 교차 상관관계를 이용하였다. 실험 결과, 코사인 유사도 측정 결과로 평균 유사도는 0.991의 결과를 나타냈으며, 교차 상관관계를 이용한 유클리디언 거리 기반 유사성 측정 결과는 평균 0.25 유사도 결과를 나타냈다. 이는 등록 데이터와 실험 데이터간의 크기가 일치하지 않더라도 가상 생체신호 생성을 통해 신호 크기 부적합 문제를 해결함을 확인하였다.
음향 장면 분류는 오디오 파일이 녹음된 환경이 어디인지 분류하는 문제이다. 이는 음향 장면 분류와 관련한 대회인 DCASE 대회에서 꾸준하게 연구되었던 분야이다. 실제 응용 분야에 음향 장면 분류 문제를 적용할 때, 모델의 복잡도를 고려하여야 한다. 특히 경량 기기에 적용하기 위해서는 경량 딥러닝 모델이 필요하다. 우리는 경량 기술이 적용된 여러 모델을 비교하였다. 먼저 log mel-spectrogram, deltas, delta-deltas 피쳐를 사용한 합성곱 신경망(CNN) 기반의 기본 모델을 제안하였다. 그리고 원래의 합성곱 층을 depthwise separable convolution block, linear bottleneck inverted residual block과 같은 효율적인 합성곱 블록으로 대체하고, 각 모델에 대하여 Quantization를 적용하여 경량 모델을 제안하였다. 경량화 기술을 고려한 모델은 기본 모델에 대비하여 성능이 비슷하거나 조금 낮은 성능을 보였지만, 모델 사이즈는 503KB에서 42.76KB로 작아진 것을 확인하였다.
급속한 비대면 환경과 모바일 우선 전략에 따라 해마다 많은 정형/비정형 데이터의 폭발적인 증가와 생성은 모든 분야에서 빅데이터를 활용한 새로운 의사 결정과 서비스를 요구하고 있다. 그러나 매년 급속히 증가하는 빅데이터를 활용하여 실무 환경에서 적용 가능한 표준 플랫폼으로 빅데이터를 수집하여 적재한 후, 정재한 빅데이터를 관계형 데이터베이스에 저장하고 처리하는 하둡 에코시스템 활용의 참조 사례들은 거의 없었다. 따라서 본 연구에서는 스프링 프레임워크 환경에서 3대의 가상 머신 서버를 통하여 하둡 2.0을 기반으로 쇼셜 네트워크 서비스에서 키워드로 검색한 비정형 데이터를 수집한 후, 수집된 비정형 데이터를 하둡 분산 파일 시스템과 HBase에 적재하고, 적재된 비정형 데이터를 기반으로 형태소 분석기를 이용하여 정형화된 빅데이터를 관계형 데이터베이스에 저장할 수 있게 설계하고 구현하였다. 향후에는 데이터 심화 분석을 위한 하이브나 머하웃을 이용하여 머신 러닝을 이용한 클러스터링과 분류 및 분석 작업 연구가 지속되어야 할 것이다.
검색에서 이미지는 시각적 속성이 중요지만, 기존의 검색방법은 문서 검색을 위한 방법에 초점이 맞춰져 있어 이미지의 속성 정보가 미반영된 키워드 중심의 검색 시스템이 대부분이다. 본 연구는 이러한 한계를 극복하고자 이미지의 벡터정보를 기반으로 유사 이미지를 검색할 수 있는 모델과 스케치로 검색 쿼리를 제공하여 유사 이미지를 검색할 수 있는 시스템을 개발하였다. 제안된 시스템은 GAN을 이용하여 스케치를 이미지 수준으로 업 샘플링하고, 이미지를 CNN을 통해 벡터로 변환한 후, 벡터 공간 모델을 이용하여 유사 이미지를 검색한다. 제안된 모델을 구현하기 위하여 패션 이미지를 이용하여 모델을 학습시켰고 패션 이미지 검색 시스템을 개발하였다. 성능 측정은 Precision at k를 이용하였으며, 0.774와 0.445의 성능 결과를 보였다. 제안된 방법을 이용하면 이미지 검색 의도를 키워드로 표현하는데 어려움을 느끼는 사용자들의 검색 결과에 긍정적 효과가 나타날 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.