• 제목/요약/키워드: Deep learning Network

검색결과 2,363건 처리시간 0.023초

전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상 (Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning)

  • 박성재;윤종현;안창범
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1408-1414
    • /
    • 2019
  • 전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.

딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발 (Development of deep learning structure for complex microbial incubator applying deep learning prediction result information)

  • 김홍직;이원복;이승호
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.116-121
    • /
    • 2023
  • 본 논문에서는 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조를 개발한다. 제안하는 복합 미생물 배양기는 수집한 복합 미생물 데이터에 대해 복합 미생물 데이터 전처리, 복합 미생물 데이터 구조 변환, 딥러닝 네트워크 설계, 설계한 딥러닝 네트워크 학습, 시제품에 적용되는 GUI 개발 등으로 구성된다. 복합 미생물 데이터 전처리에서는 미생물 배양에 필요한 당밀, 영양제, 식물엑기스, 소금 등의 양에 대해 원-핫 인코딩을 실시하며, 배양된 결과로 측정된 pH 농도와 미생물의 셀 수에 대해 최대-최소 정규화 방법을 사용하여 데이터를 전처리한다. 복합 미생물 데이터 구조 변환에서는 전처리된 데이터를 물 온도와 미생물의 셀 수를 연결하여 그래프 구조로 변환 후, 인접 행렬과 속성 정보로 나타내어 딥러닝 네트워크의 입력 데이터로 사용한다. 딥러닝 네트워크 설계에서는 그래프 구조에 특화된 그래프 합성곱 네트워크를 설계하여 복합 미생물 데이터를 학습시킨다. 설계한 딥러닝 네트워크는 Cosine 손실함수를 사용하여 학습 시에 발생하는 오차를 최소화하는 방향으로 학습을 진행한다. 시제품에 적용되는 GUI 개발은 사용자가 선택하는 물 온도에 따라 목표하는 pH 농도(3.8 이하) 복합 미생물의 셀 수(108 이상)를 배양시키기 적합한 순으로 나타낸다. 제안된 미생물 배양기의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, pH 농도의 경우 평균 3.7로, 복합 미생물의 셀 수는 1.7 × 108으로 측정되었다. 따라서, 본 논문에서 제안한 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조의 효용성이 입증되었다.

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.

심층 학습 모델을 이용한 EPS 동작 신호의 인식 (EPS Gesture Signal Recognition using Deep Learning Model)

  • 이유라;김수형;김영철;나인섭
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.35-41
    • /
    • 2016
  • 본 논문에서는 심층 학습 모델 방법을 이용하여 EPS(Electronic Potential Sensor) 기반의 손동작 신호를 인식하는 시스템을 제안한다. 전기장 기반 센서인 EPS로부터 추출된 신호는 다량의 잡음이 포함되어 있어 이를 제거하는 전처리과정을 거쳐야 한다. 주파수 대역 특징 필터를 이용한 잡음 제거한 후, 신호는 시간에 따른 전압(Voltage) 값만 가지는 1차원적 특징을 지닌다. 2차원 데이터를 입력으로 하여 컨볼루션 연산을 하는 알고리즘에 적합한 형태를 갖추기 위해 신호는 차원 변형을 통해 재구성된다. 재구성된 신호데이터는 여러 계층의 학습 층(layer)을 가지는 심층 학습 기반의 모델을 통해 분류되어 최종 인식된다. 기존 확률 기반 통계적 모델링 알고리즘은 훈련 후 모델을 생성하는 과정에서 초기 파라미터에 결과가 좌우되는 어려움이 있었다. 심층 학습 기반 모델은 학습 층을 쌓아 훈련을 반복하므로 이를 극복할 수 있다. 실험에서, 제안된 심층 학습 기반의 서로 다른 구조를 가지는 컨볼루션 신경망(Convolutional Neural Networks), DBN(Deep Belief Network) 알고리즘과 통계적 모델링 기반의 방법을 이용한 인식 결과의 성능을 비교하였고, 컨볼루션 신경망 알고리즘이 다른 알고리즘에 비해 EPS 동작신호 인식에서 보다 우수한 성능을 나타냄을 보였다.

Application of Reinforcement Learning in Detecting Fraudulent Insurance Claims

  • Choi, Jung-Moon;Kim, Ji-Hyeok;Kim, Sung-Jun
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.125-131
    • /
    • 2021
  • Detecting fraudulent insurance claims is difficult due to small and unbalanced data. Some research has been carried out to better cope with various types of fraudulent claims. Nowadays, technology for detecting fraudulent insurance claims has been increasingly utilized in insurance and technology fields, thanks to the use of artificial intelligence (AI) methods in addition to traditional statistical detection and rule-based methods. This study obtained meaningful results for a fraudulent insurance claim detection model based on machine learning (ML) and deep learning (DL) technologies, using fraudulent insurance claim data from previous research. In our search for a method to enhance the detection of fraudulent insurance claims, we investigated the reinforcement learning (RL) method. We examined how we could apply the RL method to the detection of fraudulent insurance claims. There are limited previous cases of applying the RL method. Thus, we first had to define the RL essential elements based on previous research on detecting anomalies. We applied the deep Q-network (DQN) and double deep Q-network (DDQN) in the learning fraudulent insurance claim detection model. By doing so, we confirmed that our model demonstrated better performance than previous machine learning models.

딥러닝 및 증강현실을 이용한 재난대응 역량 강화를 위한 네트워크 자원 확보 방안 (Deployment of Network Resources for Enhancement of Disaster Response Capabilities with Deep Learning and Augmented Reality)

  • 신영환;윤주식;서순호;정종문
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.69-77
    • /
    • 2017
  • 본 논문에서는 재난상황에서 딥러닝과 증강현실 기술을 활용한 재난대응 방안과 그에 따른 네트워크 자원 확보 방안을 제안한다. 딥러닝과 증강현실 기술의 특징과 현황을 파악하고, 재난분야와의 연관성에 관하여 설명한다. 딥러닝 기술을 사용하여 재난 상황을 정확하게 인지하고 관련 재난 정보를 증강현실로 구현하여 재난대응 현장 및 통합지원본부, 재난안전대책본부 등에 제공함으로써 재난대응 역량을 강화할 수 있다. 각종 재난사례 중 화재상황을 중점으로, 딥러닝 기반 화재상황 인식 및 증강현실 정보제공을 통해 효과적으로 재난대응 역량을 강화할 수 있는 방안을 제시한다. 마지막으로, 본 논문의 재난대응 방안을 활용하기 위한 네트워크 자원 확보 기법을 제시한다.

시각장애인을 위한 딥러닝기반 심볼인식 (Deep learning based symbol recognition for the visually impaired)

  • 박상헌;전태재;김상혁;이상윤;김주완
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.249-256
    • /
    • 2016
  • 최근 시각장애인 및 교통약자의 자유로운 보행을 보장하기 위한 많은 기술들이 연구되고 있다. 자유로운 보행을 위한 장치로는 영상카메라, 초음파센서 및 가속도 센서 등을 이용하는 스마트 지팡이와 스마트 안경 관련 기술이 있다. 대표적인 기술로는 물체를 식별하여 장애물을 검출하고 보행 가능 영역을 추출하는 기술, 랜드마크 심볼 정보를 인식하여 주위 환경 정보를 주는 기술 등 여러 가지 기술이 개발되고 있다. 본 논문에서는 시각장애인에게 필요한 시설의 대표 심볼을 선정하여 착용한 영상 장치의 정보로부터 심볼을 인식하는 알고리즘을 딥러닝 기술을 이용하여 연구하였다. 그 결과로 딥러닝 영상처리 분야에서 사용되는 CNN(Convolutional Neural Network)기법을 사용하여 서로 다른 딥러닝 구조를 실험을 통하여 비교하고 분석하였다.

A Survey of Deep Learning in Agriculture: Techniques and Their Applications

  • Ren, Chengjuan;Kim, Dae-Kyoo;Jeong, Dongwon
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1015-1033
    • /
    • 2020
  • With promising results and enormous capability, deep learning technology has attracted more and more attention to both theoretical research and applications for a variety of image processing and computer vision tasks. In this paper, we investigate 32 research contributions that apply deep learning techniques to the agriculture domain. Different types of deep neural network architectures in agriculture are surveyed and the current state-of-the-art methods are summarized. This paper ends with a discussion of the advantages and disadvantages of deep learning and future research topics. The survey shows that deep learning-based research has superior performance in terms of accuracy, which is beyond the standard machine learning techniques nowadays.

Basics of Deep Learning: A Radiologist's Guide to Understanding Published Radiology Articles on Deep Learning

  • Synho Do;Kyoung Doo Song;Joo Won Chung
    • Korean Journal of Radiology
    • /
    • 제21권1호
    • /
    • pp.33-41
    • /
    • 2020
  • Artificial intelligence has been applied to many industries, including medicine. Among the various techniques in artificial intelligence, deep learning has attained the highest popularity in medical imaging in recent years. Many articles on deep learning have been published in radiologic journals. However, radiologists may have difficulty in understanding and interpreting these studies because the study methods of deep learning differ from those of traditional radiology. This review article aims to explain the concepts and terms that are frequently used in deep learning radiology articles, facilitating general radiologists' understanding.

스마트 빌딩 시스템을 위한 심층 강화학습 기반 양방향 전력거래 협상 기법 (Bi-directional Electricity Negotiation Scheme based on Deep Reinforcement Learning Algorithm in Smart Building Systems)

  • 이동구;이지영;경찬욱;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.215-219
    • /
    • 2021
  • 본 논문에서는 스마트 빌딩 시스템과 전력망이 각각의 전력거래 희망가격을 제안하고 조정하는 양방향 전력거래 협상 기법에 심층 강화학습 기법을 적용한 전력거래 기법을 제안한다. 심층 강화학습 기법 중 하나인 deep Q network 알고리즘을 적용하여 스마트 빌딩과 전력망의 거래 희망가격을 조정하도록 하였다. 제안하는 심층 강화학습 기반 양방향 전력거래 협상 알고리즘은 학습과정에서 평균 43.78회의 협상을 통해 가격 협의에 이르는 것을 실험을 통해 확인하였다. 또한, 본 연구에서 설정한 협상 시나리오에 따라 스마트 빌딩과 전력망이 거래 희망가격을 조정하는 과정을 실험을 통해 확인하였다.