• Title/Summary/Keyword: Deep foundation

Search Result 265, Processing Time 0.022 seconds

Construction of harbor foundation using deep mixing method (심층혼합고결처리공법을 이용한 항만구조물 기초설치에 관한 연구)

  • 한우선;이태영;임우성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.841-846
    • /
    • 2003
  • The purpose of this paper is to present and discuss some of harbor foundation constructed on seashore soft ground by Deep Wing Mixing in deep mixing method. A series of laboratory and field experiments including unconfined compressive strength, permeability, geo-physical survey, sea water concentration, lateral and settlement measurement, field core sample were carried out to check physical, mechanical and environmental characteristics of solidified foundation soil treated by HWS solidifying agent. The results from this research showed that Deep Wing Mixing method could be efficiently applied in the construction site of seashore structure foundation.

  • PDF

Deep Foundations for High-Rise Buildings in Hong Kong

  • Sze, James W.C.
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.261-270
    • /
    • 2015
  • Hong Kong is a renowned small city with densely placed skyscrapers. It is no surprise that heavy duty or even mega foundations are built over the years to support these structures. To cope with the fast construction pace, several heavy deep foundation types have been widely adopted with some prescribed design rules. This Paper has selected two commonly adopted but distinctive foundation types, namely large diameter bored piles and percussive steel H-piles to illustrate the special design and construction considerations related to these pile types in related to local context. The supervision requirement in related to foundation works for which again may be unique in Hong Kong will also be highlighted. A case history is also discussed in the later part of the Paper to illustrate the application of one of these foundations and to highlight the importance of considering foundation design and basement excavation method in a holistic manner.

Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions (2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석)

  • 김상효;마호성;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

Application of Rammed Aggregate Pier(Geopier) for Foundation Reinforcement of Structures (구조물 기초보강용 짧은 쇄석다짐말뚝(Geopier)의 적용성 및 활용방안에 관한 연구)

  • Joeng, Gyong-Hwan;Jung, Sun-Tae;Moon, Jun-Bai;Kim, Dong-Jun;Baek, Kyung-Jong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.479-488
    • /
    • 2005
  • Geopier soil reinforcement system which crushed aggregate is put into a hole and rammed the aggregate with tamper is a viable alternative to deep foundation to over-excavation and replacement. Also, Geopier is intermediate foundation of deep and shallow foundation. In this paper, the value of Geopier element stiffness modulus($K_g$) when designed is compared with the measured value($K_g$) by the in-situ modulus Load test in the field. Also, this paper presents a technology overview of system capabilities and application for foundation reinforcement of structures.

  • PDF

Stability Analysis of Marine Structure Foundation Constructed by Deep Mortar Piles (심층몰탈파일로 조성된 항만구조물 기초의 안정성 검토)

  • 천병식;여유현;김경민;양진석;김도식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • In this case study, under conideration of field situations, such as increase of water level, height increment of the marine structure, dredging and backfill, the stability analysis of sliding and lateral flow of the marine structure in OOOharbor was carried out, and foundation reinforcement methods was presented. based on the results of site investigation, the stability analysis of slope sliding and lateral flow was performed as following. In section BH-1, 2, the analysis was performed in two cases that the marine structure was heightened and filled, and not heightened and filled. In section BH-1, 4, heightened and filled. The analysis results showed that the stabilities of slope sliding and lateral flow in section BH-1, 2, 3, 4 were unstable. After additional reinforcements with Deep Mortar Pile, the stabilities in section BH-1, 2, 3, 4 were evaluated as efficiently large.

  • PDF

Trend in suction bucket foundation for offshore wind turbine (해상풍력발전설비를 위한 버켓기초의 기술동향 및 기술개발 방향)

  • Youn, Hee-Jung;Jang, In-Sung;Oh, Myoung-Hak;Kwon, O-Soon;Jung, Sung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.494-503
    • /
    • 2010
  • This paper reviews research trend in suction bucket foundation. Wind energy farm has been considered as an efficient alternative to fuel energy as world markets attempt to discover renewable resources. Recently, Korean government initiated the research projects investigating installation method of offshore wind energy foundation and design guideline as well as verifying feasibility of offshore wind farm. In fact, the installation of monopile and gravity type foundation has been sucessfully carried out in European and other advanced countries, and design guideline of those foundations are well established; however, various types of foundation would be necessary in the near future as offshore wind farm demands abundant wind resources in deep sea. In this paper, bucket foundation is spot lighted as a powerful and economic alternative applicable to deep sea condition.

  • PDF

The design and the full load test results of 765kV tower foundation (765kV 철탑기초 설계 및 기초재하시험)

  • Kim, J.B.;Cho, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.447-449
    • /
    • 1995
  • In terms of a new development on the foundation design of 765kV tower and its applications, a revolutionary turning point comes out through this study in approaching the new concept, what we call "Rock anchor" "Deep foundation" to tower foundation which was officially approved by the full load test. this contents is described of the foundation design and the results of full load test for two types foundation.

  • PDF

2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment (시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석)

  • Hyunsoo Park;Hwiyoung Kim ;Dongki Chung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.621-635
    • /
    • 2023
  • The assessment of structural condition is a crucial process for evaluating its usability and determining the diagnostic cycle. The currently employed manpower-based methods suffer from issues related to safety, efficiency, and objectivity. To address these concerns, research based on deep learning using images is being conducted. However, acquiring structural damage data is challenging, making it difficult to construct a substantial amount of training data, thus limiting the effectiveness of deep learning-based condition assessment. In this study, we propose a foundation model-based 2-step structural damage analysis to overcome the lack of training data in image-based structural condition assessments. We subdivided the elements of structural condition assessment into instantiation and quantification. In the quantification step, we applied a foundation model for image segmentation. Our method demonstrated a 10%-point increase in mean intersection over union compared to conventional image segmentation techniques, with a notable 40%-point improvement in the case of rebar exposure. We anticipate that our proposed approach will enhance performance in domains where acquiring training data is challenging.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Side Friction of Deep Foundation for Transmission Tower in Rock (암반에 설치된 송전철탑 심형기초의 주면마찰력 평가)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.149-160
    • /
    • 2007
  • Six prototype field tests (five 1/8 and one 1/2 scale tests) have been conducted in order to determine the uplift resistance of deep foundation for transmission line structures. Test sites, located in the city of Eumseng in Choongbuk province, are classified as gneiss. These test results reveal failures not along the foundation-rock interface but either along the damaged surrounding rock mass caused by excavation or along the pre-existing rock joint. Test results also show the uplift resistance which is 20 $\sim$ 30% higher than the current design strength of side friction. In addition to fold tests, four concrete core samples between the liner plate and the surrounding rock mass have been obtained from the existing transmission foundations to study the effect of the liner plate which is installed prior to placing concrete. The compressive strength of these concrete core samples shows 63 $\sim$ 72% of the strength at the time of foundation construction. Side frictional resistance based on such less compacted concrete reaches satisfying uplift design strength.