• Title/Summary/Keyword: Deep fake

Search Result 51, Processing Time 0.018 seconds

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

CNN-Based Fake Image Identification with Improved Generalization (일반화 능력이 향상된 CNN 기반 위조 영상 식별)

  • Lee, Jeonghan;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

FAGON: Fake News Detection Model Using Grammatical Transformation on Deep Neural Network

  • Seo, Youngkyung;Han, Seong-Soo;Jeon, You-Boo;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4958-4970
    • /
    • 2019
  • As technology advances, the amount of fake news is increasing more and more by various reasons such as political issues and advertisement exaggeration. However, there have been very few research works on fake news detection, especially which uses grammatical transformation on deep neural network. In this paper, we shall present a new Fake News Detection Model, called FAGON(Fake news detection model using Grammatical transformation On deep Neural network) which determines efficiently if the proposition is true or not for the given article by learning grammatical transformation on neural network. Especially, our model focuses the Korean language. It consists of two modules: sentence generator and classification. The former generates multiple sentences which have the same meaning as the proposition, but with different grammar by training the grammatical transformation. The latter classifies the proposition as true or false by training with vectors generated from each sentence of the article and the multiple sentences obtained from the former model respectively. We shall show that our model is designed to detect fake news effectively by exploiting various grammatical transformation and proper classification structure.

Development and Distribution of Deep Fake e-Learning Contents Videos Using Open-Source Tools

  • HO, Won;WOO, Ho-Sung;LEE, Dae-Hyun;KIM, Yong
    • Journal of Distribution Science
    • /
    • v.20 no.11
    • /
    • pp.121-129
    • /
    • 2022
  • Purpose: Artificial intelligence is widely used, particularly in the popular neural network theory called Deep learning. The improvement of computing speed and capability expedited the progress of Deep learning applications. The application of Deep learning in education has various effects and possibilities in creating and managing educational content and services that can replace human cognitive activity. Among Deep learning, Deep fake technology is used to combine and synchronize human faces with voices. This paper will show how to develop e-Learning content videos using those technologies and open-source tools. Research design, data, and methodology: This paper proposes 4 step development process, which is presented step by step on the Google Collab environment with source codes. This technology can produce various video styles. The advantage of this technology is that the characters of the video can be extended to any historical figures, celebrities, or even movie heroes producing immersive videos. Results: Prototypes for each case are also designed, developed, presented, and shared on YouTube for each specific case development. Conclusions: The method and process of creating e-learning video contents from the image, video, and audio files using Deep fake open-source technology was successfully implemented.

Effective Analsis of GAN based Fake Date for the Deep Learning Model (딥러닝 훈련을 위한 GAN 기반 거짓 영상 분석효과에 대한 연구)

  • Seungmin, Jang;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.137-141
    • /
    • 2022
  • To inspect the power facility faults using artificial intelligence, it need that improve the accuracy of the diagnostic model are required. Data augmentation skill using generative adversarial network (GAN) is one of the best ways to improve deep learning performance. GAN model can create realistic-looking fake images using two competitive learning networks such as discriminator and generator. In this study, we intend to verify the effectiveness of virtual data generation technology by including the fake image of power facility generated through GAN in the deep learning training set. The GAN-based fake image was created for damage of LP insulator, and ResNet based normal and defect classification model was developed to verify the effect. Through this, we analyzed the model accuracy according to the ratio of normal and defective training data.

A StyleGAN Image Detection Model Based on Convolutional Neural Network (합성곱신경망 기반의 StyleGAN 이미지 탐지모델)

  • Kim, Jiyeon;Hong, Seung-Ah;Kim, Hamin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1447-1456
    • /
    • 2019
  • As artificial intelligence technology is actively used in image processing, it is possible to generate high-quality fake images based on deep learning. Fake images generated using GAN(Generative Adversarial Network), one of unsupervised learning algorithms, have reached levels that are hard to discriminate from the naked eye. Detecting these fake images is required as they can be abused for crimes such as illegal content production, identity fraud and defamation. In this paper, we develop a deep-learning model based on CNN(Convolutional Neural Network) for the detection of StyleGAN fake images. StyleGAN is one of GAN algorithms and has an excellent performance in generating face images. We experiment with 48 number of experimental scenarios developed by combining parameters of the proposed model. We train and test each scenario with 300,000 number of real and fake face images in order to present a model parameter that improves performance in the detection of fake faces.

Detecting Fake News about COVID-19 Infodemic Using Deep Learning and Content Analysis

  • Olga Chernyaeva;Taeho Hong;YongHee Kim;YoungKi Park;Gang Ren;Jisoo Ock
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.945-963
    • /
    • 2022
  • With the widespread use of social media, online social platforms like Twitter have become a place of rapid dissemination of information-both accurate and inaccurate. After the COVID-19 outbreak, the overabundance of fake information and rumours on online social platforms about the COVID-19 pandemic has spread over society as quickly as the virus itself. As a result, fake news poses a significant threat to effective virus response by negatively affecting people's willingness to follow the proper public health guidelines and protocols, which makes it important to identify fake information from online platforms for the public interest. In this research, we introduce an approach to detect fake news using deep learning techniques, which outperform traditional machine learning techniques with a 93.1% accuracy. We then investigate the content differences between real and fake news by applying topic modeling and linguistic analysis. Our results show that topics on Politics and Government services are most common in fake news. In addition, we found that fake news has lower analytic and authenticity scores than real news. With the findings, we discuss important academic and practical implications of the study.

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.

Fake News Detection on Social Media using Video Information: Focused on YouTube (영상정보를 활용한 소셜 미디어상에서의 가짜 뉴스 탐지: 유튜브를 중심으로)

  • Chang, Yoon Ho;Choi, Byoung Gu
    • The Journal of Information Systems
    • /
    • v.32 no.2
    • /
    • pp.87-108
    • /
    • 2023
  • Purpose The main purpose of this study is to improve fake news detection performance by using video information to overcome the limitations of extant text- and image-oriented studies that do not reflect the latest news consumption trend. Design/methodology/approach This study collected video clips and related information including news scripts, speakers' facial expression, and video metadata from YouTube to develop fake news detection model. Based on the collected data, seven combinations of related information (i.e. scripts, video metadata, facial expression, scripts and video metadata, scripts and facial expression, and scripts, video metadata, and facial expression) were used as an input for taining and evaluation. The input data was analyzed using six models such as support vector machine and deep neural network. The area under the curve(AUC) was used to evaluate the performance of classification model. Findings The results showed that the ACU and accuracy values of three features combination (scripts, video metadata, and facial expression) were the highest in logistic regression, naïve bayes, and deep neural network models. This result implied that the fake news detection could be improved by using video information(video metadata and facial expression). Sample size of this study was relatively small. The generalizablity of the results would be enhanced with a larger sample size.