• 제목/요약/키워드: Deep Neural Network Model

검색결과 1,188건 처리시간 0.035초

Implementation of Low-cost Autonomous Car for Lane Recognition and Keeping based on Deep Neural Network model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.210-218
    • /
    • 2021
  • CNN (Convolutional Neural Network), a type of deep learning algorithm, is a type of artificial neural network used to analyze visual images. In deep learning, it is classified as a deep neural network and is most commonly used for visual image analysis. Accordingly, an AI autonomous driving model was constructed through real-time image processing, and a crosswalk image of a road was used as an obstacle. In this paper, we proposed a low-cost model that can actually implement autonomous driving based on the CNN model. The most well-known deep neural network technique for autonomous driving is investigated and an end-to-end model is applied. In particular, it was shown that training and self-driving on a simulated road is possible through a practical approach to realizing lane detection and keeping.

임베디드 시스템에서의 객체 분류를 위한 인공 신경망 경량화 연구 (Neural Network Model Compression Algorithms for Image Classification in Embedded Systems)

  • 신희중;오현동
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.133-141
    • /
    • 2022
  • This paper introduces model compression algorithms which make a deep neural network smaller and faster for embedded systems. The model compression algorithms can be largely categorized into pruning, quantization and knowledge distillation. In this study, gradual pruning, quantization aware training, and knowledge distillation which learns the activation boundary in the hidden layer of the teacher neural network are integrated. As a large deep neural network is compressed and accelerated by these algorithms, embedded computing boards can run the deep neural network much faster with less memory usage while preserving the reasonable accuracy. To evaluate the performance of the compressed neural networks, we evaluate the size, latency and accuracy of the deep neural network, DenseNet201, for image classification with CIFAR-10 dataset on the NVIDIA Jetson Xavier.

심층신경망 기반의 뷰티제품 추천시스템 (Deep Neural Network-Based Beauty Product Recommender)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권6호
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

심층 신경망모형을 사용한 미세먼지 PM10의 예측 (Prediction of fine dust PM10 using a deep neural network model)

  • 전성현;손영숙
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.265-285
    • /
    • 2018
  • 본 연구에서는 미세먼지 $PM_{10}$의 4가지 분류 등급인 '좋음, 보통, 나쁨, 매우 나쁨' 그리고 2가지 분류 등급인 '좋음 혹은 보통, 나쁨 혹은 매우 나쁨'을 예측하기 위해서 심층 신경망모형을 사용하였다. 2010년부터 2015년까지 국내 6개 대도시 지역에서 관측한 일별 미세먼지 데이터에 대하여 기존 분류기법인 신경망모형, 다항 로지스틱 회귀모형, Support Vector Machine, Random Forest을 적용했을 때에 비해서 심층 신경망모형의 정확도는 더 높아졌다.

DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos

  • Song, Yeongtaek;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.150-161
    • /
    • 2018
  • We propose a novel deep neural network model for detecting human activities in untrimmed videos. The process of human activity detection in a video involves two steps: a step to extract features that are effective in recognizing human activities in a long untrimmed video, followed by a step to detect human activities from those extracted features. To extract the rich features from video segments that could express unique patterns for each activity, we employ two different convolutional neural network models, C3D and I-ResNet. For detecting human activities from the sequence of extracted feature vectors, we use BLSTM, a bi-directional recurrent neural network model. By conducting experiments with ActivityNet 200, a large-scale benchmark dataset, we show the high performance of the proposed DeepAct model.

심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용 (Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil)

  • 김영상;정현철;허정원;정경환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

스파이킹 신경망 추론을 위한 심층 신경망 가중치 변환 (Deep Neural Network Weight Transformation for Spiking Neural Network Inference)

  • 이정수;허준영
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.26-30
    • /
    • 2022
  • 스파이킹 신경망은 실제 두뇌 뉴런의 작동원리를 적용한 신경망으로, 뉴런의 생물학적 메커니즘으로 인해 기존 신경망보다 학습과 추론에 소모되는 전력이 적다. 최근 딥러닝 모델이 거대해지며 운용에 소모되는 비용 또한 기하급수적으로 증가함에 따라 스파이킹 신경망은 합성곱, 순환 신경망을 잇는 3세대 신경망으로 주목받으며 관련 연구가 활발히 진행되고 있다. 그러나 스파이킹 신경망 모델을 산업에 적용하기 위해서는 아직 선행되어야 할 연구가 많이 남아있고, 새로운 모델을 적용하기 위한 모델 재학습 문제 역시 해결해야 한다. 본 논문에서는 기존의 학습된 딥러닝 모델의 가중치를 추출하여 스파이킹 신경망 모델의 가중치로 변환하는 것으로 모델 재학습 비용을 최소화하는 방법을 제안한다. 또한, 변환된 가중치를 사용한 추론 결과와 기존 모델의 결과를 비교해 가중치 변환이 올바르게 작동함을 보인다.

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.