• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.059 seconds

Utilization of age information for speaker verification using multi-task learning deep neural networks (멀티태스크 러닝 심층신경망을 이용한 화자인증에서의 나이 정보 활용)

  • Kim, Ju-ho;Heo, Hee-Soo;Jung, Jee-weon;Shim, Hye-jin;Kim, Seung-Bin;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.593-600
    • /
    • 2019
  • The similarity in tones between speakers can lower the performance of speaker verification. To improve the performance of speaker verification systems, we propose a multi-task learning technique using deep neural network to learn speaker information and age information. Multi-task learning can improve generalization performances, because it helps deep neural networks to prevent hidden layers from overfitting into one task. However, we found in experiments that learning of age information does not work well in the process of learning the deep neural network. In order to improve the learning, we propose a method to dynamically change the objective function weights of speaker identification and age estimation in the learning process. Results show the equal error rate based on RSR2015 evaluation data set, 6.91 % for the speaker verification system without using age information, 6.77 % using age information only, and 4.73 % using age information when weight change technique was applied.

Deep Learning Based CCTV Fire Detection System (딥러닝 기반 CCTV 화재 감지 시스템)

  • Yim, Jihyeon;Park, Hyunho;Lee, Wonjae;Kim, Seonghyun;Lee, Yong-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.139-141
    • /
    • 2017
  • 화재는 다른 재난보다 확산 속도가 빠르기 때문에 신속하고 정확한 감지와 지속적인 감시가 요구된다. 최근, 신속하고 정확한 화재 감지를 위해, CCTV(Closed-Circuit TeleVision)으로 획득한 이미지를 기계학습(Machine Learning)을 이용해 화재 발생 여부를 감지하는 화재 감지 시스템이 주목받고 있다. 본 논문에서는 기계학습의 기술 중 정확도가 가장 높은 딥러닝(Deep Learning)기반의 CCTV 화재 감지 시스템을 제안한다. 본 논문의 시스템은 딥러닝 기술 적용뿐만이 아니라, CCTV 이미지 전처리 과정을 보완함으로써 딥러닝에서의 미지 데이터(unseen data)의 낮은 분류 정확도 문제인 과적합(overfitting)문제를 해결하였다. 본 논문의 시스템은 약 80,000 개의 CCTV 이미지 데이터를 학습하여, 90% 이상의 화재 이미지 분류 정확도의 성능을 보여주었다.

  • PDF

Deep-Learning based PHM Embedded System Using Noise·Vibration (소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템)

  • Lee, Se-Hoon;Sin, Bo-Bae;Kim, Ye-Ji;Kim, Ji-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

A Deeping Learning-based Article- and Paragraph-level Classification

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.31-41
    • /
    • 2018
  • Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.

COVID-19 Diagnosis from CXR images through pre-trained Deep Visual Embeddings

  • Khalid, Shahzaib;Syed, Muhammad Shehram Shah;Saba, Erum;Pirzada, Nasrullah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.175-181
    • /
    • 2022
  • COVID-19 is an acute respiratory syndrome that affects the host's breathing and respiratory system. The novel disease's first case was reported in 2019 and has created a state of emergency in the whole world and declared a global pandemic within months after the first case. The disease created elements of socioeconomic crisis globally. The emergency has made it imperative for professionals to take the necessary measures to make early diagnoses of the disease. The conventional diagnosis for COVID-19 is through Polymerase Chain Reaction (PCR) testing. However, in a lot of rural societies, these tests are not available or take a lot of time to provide results. Hence, we propose a COVID-19 classification system by means of machine learning and transfer learning models. The proposed approach identifies individuals with COVID-19 and distinguishes them from those who are healthy with the help of Deep Visual Embeddings (DVE). Five state-of-the-art models: VGG-19, ResNet50, Inceptionv3, MobileNetv3, and EfficientNetB7, were used in this study along with five different pooling schemes to perform deep feature extraction. In addition, the features are normalized using standard scaling, and 4-fold cross-validation is used to validate the performance over multiple versions of the validation data. The best results of 88.86% UAR, 88.27% Specificity, 89.44% Sensitivity, 88.62% Accuracy, 89.06% Precision, and 87.52% F1-score were obtained using ResNet-50 with Average Pooling and Logistic regression with class weight as the classifier.

The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning (기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구)

  • Lee, Se-Hyeok;Kim, Seung-Hyun;Woo, Yonghoon;Moon, Jae-Pil;Yang, Inchul
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • Database of Cut-slope management system (CSMS) has been constructed based on investigations of all slopes on the roads of the whole country. The investigation data is documented by human, so it is inevitable to avoid human-error such as missing-data and incorrect entering data into computer. The goal of this paper is constructing a prediction model based on several machine-learning algorithms to solve those imperfection problems of the CSMS data. First of all, the character-type data in CSMS data must be transformed to numeric data. After then, two algorithms, i.g., multinomial logistic regression and deep-neural-network (DNN), are performed, and those prediction models from two algorithms are compared. Finally, it is identified that the accuracy of DNN-model is better than logistic model, and the DNN-model will be utilized to improve data-quality.

Determination of Ship Collision Avoidance Path using Deep Deterministic Policy Gradient Algorithm (심층 결정론적 정책 경사법을 이용한 선박 충돌 회피 경로 결정)

  • Kim, Dong-Ham;Lee, Sung-Uk;Nam, Jong-Ho;Furukawa, Yoshitaka
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.58-65
    • /
    • 2019
  • The stability, reliability and efficiency of a smart ship are important issues as the interest in an autonomous ship has recently been high. An automatic collision avoidance system is an essential function of an autonomous ship. This system detects the possibility of collision and automatically takes avoidance actions in consideration of economy and safety. In order to construct an automatic collision avoidance system using reinforcement learning, in this work, the sequential decision problem of ship collision is mathematically formulated through a Markov Decision Process (MDP). A reinforcement learning environment is constructed based on the ship maneuvering equations, and then the three key components (state, action, and reward) of MDP are defined. The state uses parameters of the relationship between own-ship and target-ship, the action is the vertical distance away from the target course, and the reward is defined as a function considering safety and economics. In order to solve the sequential decision problem, the Deep Deterministic Policy Gradient (DDPG) algorithm which can express continuous action space and search an optimal action policy is utilized. The collision avoidance system is then tested assuming the $90^{\circ}$intersection encounter situation and yields a satisfactory result.

An Automated Industry and Occupation Coding System using Deep Learning (딥러닝 기법을 활용한 산업/직업 자동코딩 시스템)

  • Lim, Jungwoo;Moon, Hyeonseok;Lee, Chanhee;Woo, Chankyun;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • An Automated Industry and Occupation Coding System assigns statistical classification code to the enormous amount of natural language data collected from people who write about their industry and occupation. Unlike previous studies that applied information retrieval, we propose a system that does not need an index database and gives proper code regardless of the level of classification. Also, we show our model, which utilized KoBERT that achieves high performance in natural language downstream tasks with deep learning, outperforms baseline. Our method achieves 95.65%, 91.51%, and 97.66% in Occupation/Industry Code Classification of Population and Housing Census, and Industry Code Classification of Census on Basic Characteristics of Establishments. Moreover, we also demonstrate future improvements through error analysis in the respect of data and modeling.

Deep Learning-based Real-time Heart Rate Measurement System Using Mobile Facial Videos (딥러닝 기반의 모바일 얼굴 영상을 이용한 실시간 심박수 측정 시스템)

  • Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1481-1491
    • /
    • 2021
  • Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.

Real-time Fault Detection System of a Pneumatic Cylinder Via Deep-learning Model Considering Time-variant Characteristic of Sensor Data (센서 데이터의 시계열 특성을 고려한 딥러닝 모델 기반의 공압 실린더 고장 감지 시스템 구현)

  • Byeong Su Kim;Geun Myeong Song;Min Jeong Lee;Sujeong Baek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.10-20
    • /
    • 2024
  • In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder's status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.