• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.034 seconds

Research on Artificial Intelligence Based Shipping Container Loading Safety Management System (인공지능 기반 컨테이너 적재 안전관리 시스템 연구)

  • Kim Sang Woo;Oh Se Yeong;Seo Yong Uk;Yeon Jeong Hum;Cho Hee Jeong;Youn Joosang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.273-282
    • /
    • 2023
  • Recently, various technologies such as logistics automation and port operations automation with ICT technology are being developed to build smart ports. However, there is a lack of technology development for port safety and safety accident prevention. This paper proposes an AI-based shipping container loading safety management system for the prevention of safety accidents at container loading fields in ports. The system consists of an AI-based shipping container safety accident risk classification and storage function and a real-time safety accident monitoring function. The system monitors the accident risk at the site in real-time and can prevent container collapse accidents. The proposed system is developed as a prototype, and the system is ecaluated by direct application in a port.

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Web based Customer Power Demand Variation Estimation System using LSTM (LSTM을 이용한 웹기반 수용가별 전력수요 변동성 평가시스템)

  • Seo, Duck Hee;Lyu, Joonsoo;Choi, Eun Jeong;Cho, Soohwan;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.587-594
    • /
    • 2018
  • The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Freeway Bus-Only Lane Enforcement System Using Infrared Image Processing Technique (적외선 영상검지 기술을 활용한 고속도로 버스전용차로 단속시스템 개발)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • An automatic freeway bus-only lane enforcement system was developed and assessed in a real-world environment. Observation of a bus-only lane on the Youngdong freeway, South Korea, revealed that approximately 99% of the vehicles violated the high-occupancy vehicle (HOV) lane regulation. However, the current enforcement by the police not only exhibits a low enforcement rate, but also induces unnecessary safety and delay concerns. Since vehicles with six passengers or higher are permitted to enter freeway bus-only lanes, identifying the number of passengers in a vehicle is a core technology required for a freeway bus-only lane enforcement system. To that end, infrared cameras and the You Only Look Once (YOLOv5) deep learning algorithm were utilized. For assessment of the performance of the developed system, two environments, including a controlled test-bed and a real-world freeway, were used. As a result, the performances under the test-bed and the real-world environments exhibited 7% and 8% errors, respectively, indicating satisfactory outcomes. The developed system would contribute to an efficient freeway bus-only lane operations as well as eliminate safety and delay concerns caused by the current manual enforcement procedures.

Hybrid phishing site detection system with GRU-based shortened URL determination technique (GRU 기반 단축 URL 판별 기법을 적용한 하이브리드 피싱 사이트 탐지 시스템)

  • Hae-Soo Kim;Mi-Hui Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.213-219
    • /
    • 2023
  • According to statistics from the National Police Agency, smishing crimes using texts or messengers have increased dramatically since COVID-19. In addition, most of the cases of impersonation of public institutions reported to agency were related to vaccination and reward, and many methods were used to trick people into clicking on fake URLs (Uniform Resource Locators). When detecting them, URL-based detection methods cannot detect them properly if the information of the URL is hidden, and content-based detection methods are slow and use a lot of resources. In this paper, we propose a system for URL-based detection using transformer for regular URLs and content-based detection using XGBoost for shortened URLs through the process of determining shortened URLs using GRU(Gated Recurrent Units). The F1-Score of the proposed detection system was 94.86, and its average processing time was 5.4 seconds.

A Korean Multi-speaker Text-to-Speech System Using d-vector (d-vector를 이용한 한국어 다화자 TTS 시스템)

  • Kim, Kwang Hyeon;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.469-475
    • /
    • 2022
  • To train the model of the deep learning-based single-speaker TTS system, a speech DB of tens of hours and a lot of training time are required. This is an inefficient method in terms of time and cost to train multi-speaker or personalized TTS models. The voice cloning method uses a speaker encoder model to make the TTS model of a new speaker. Through the trained speaker encoder model, a speaker embedding vector representing the timbre of the new speaker is created from the small speech data of the new speaker that is not used for training. In this paper, we propose a multi-speaker TTS system to which voice cloning is applied. The proposed TTS system consists of a speaker encoder, synthesizer and vocoder. The speaker encoder applies the d-vector technique used in the speaker recognition field. The timbre of the new speaker is expressed by adding the d-vector derived from the trained speaker encoder as an input to the synthesizer. It can be seen that the performance of the proposed TTS system is excellent from the experimental results derived by the MOS and timbre similarity listening tests.

Embedded Mask Recognition System using YOLOv5 (YOLOv5를 이용한 임베디드 마스크 인식 시스템)

  • Ga-Won Yu;Eun-Sung Choi;Young-Jin Kang;Jeon, Young Jun;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.63-73
    • /
    • 2022
  • COVID-19 has continued from 2020 to the present, and many social changes have occurred. Wearing a mask has become mandatory, and if you do not wear a mask, you cannot use public facilities or restaurants. For this reason, most public facility entrances are equipped with a mask recognition system to check whether a mask is worn. However, it is unclear whether people who cover their mouths with a scarf or who do not wear a mask properly can be identified. In this study, we proposed an embedded mask recognition system using YOLOv5. Unlike the existing mask recognition system, it was able to distinguish not only whether a mask was worn, but also whether a mask was worn in various exceptional situations, such as a person with a scarf or a person covering their mouth with their hands, and showed excellent performance when mounted on the Nvida Jetson Nano Board.

An Integrated and Complementary Evaluation System for Judging the Severity of Knee Osteoarthritis Using CNN (CNN 기반 슬관절 골관절염 중증도 판단을 위한 통합 보완된 등급 판정 시스템)

  • YeChan Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.77-89
    • /
    • 2024
  • Knee osteoarthritis (OA) is a very common musculoskeletal disorder worldwide. The assessment of knee osteoarthritis, which requires a rapid and accurate initial diagnosis, is determined to be different depending on the currently dispersed classification system, and each classification system has different criteria. Also, because the medical staff directly sees and reads the X-ray pictures, it depends on the subjective opinion of the medical staff, and it takes time to establish an accurate diagnosis and a clear treatment plan. Therefore, in this study, we designed the stenosis length measurement algorithm and Osteophyte detection and length measurement algorithm, which are the criteria for determining the knee osteoarthritis grade, separately using CNN, which is a deep learning technique. In addition, we would like to create a grading system that integrates and complements the existing classification system and show results that match the judgments of actual medical staff. Based on publicly available OAI (Osteoarthritis Initiative) data, a total of 9,786 knee osteoarthritis data were used in this study, eventually achieving an Accuracy of 69.8% and an F1 score of 76.65%.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.