• Title/Summary/Keyword: Deep Learning Models

Search Result 1,295, Processing Time 0.032 seconds

Recyclable Objects Detection via Bounding Box CutMix and Standardized Distance-based IoU (Bounding Box CutMix와 표준화 거리 기반의 IoU를 통한 재활용품 탐지)

  • Lee, Haejin;Jung, Heechul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.289-296
    • /
    • 2022
  • In this paper, we developed a deep learning-based recyclable object detection model. The model is developed based on YOLOv5 that is a one-stage detector. The deep learning model detects and classifies the recyclable object into 7 categories: paper, carton, can, glass, pet, plastic, and vinyl. We propose two methods for recyclable object detection models to solve problems during training. Bounding Box CutMix solved the no-objects training images problem of Mosaic, a data augmentation used in YOLOv5. Standardized Distance-based IoU replaced DIoU using a normalization factor that is not affected by the center point distance of the bounding boxes. The recyclable object detection model showed a final mAP performance of 0.91978 with Bounding Box CutMix and 0.91149 with Standardized Distance-based IoU.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

Data augmentation technique based on image binarization for constructing large-scale datasets (대형 이미지 데이터셋 구축을 위한 이미지 이진화 기반 데이터 증강 기법)

  • Lee JuHyeok;Kim Mi Hui
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2023
  • Deep learning can solve various computer vision problems, but it requires a large dataset. Data augmentation technique based on image binarization for constructing large-scale datasets is proposed in this paper. By extracting features using image binarization and randomly placing the remaining pixels, new images are generated. The generated images showed similar quality to the original images and demonstrated excellent performance in deep learning models.

Restoring CCTV Data and Improving Object Detection Performance in Construction Sites by Super Resolution Based on Deep Learning (Super Resolution을 통한 건설현장 CCTV 고해상도 복원 및 Object Detection 성능 향상)

  • Kim, Kug-Bin;Suh, Hyo-Jeong;Kim, Ha-Rim;Yoo, Wi-Sung;Cho, Hun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.251-252
    • /
    • 2023
  • As technology improves with the 4th industrial revolution, smart construction is becoming a key part of safety management in the architecture and civil engineering. By using object detection technology with CCTV data, construction sites can be managed efficiently. In this study, super resolution technology based on deep learning is proposed to improve the accuracy of object detection in construction sites. As the resolution of a train set data and test set data get higher, the accuracy of object detection model gets better. Therefore, according to the scale of construction sites, different object detection models can be considered.

  • PDF

An Efficient Deep Learning Based Image Recognition Service System Using AWS Lambda Serverless Computing Technology (AWS Lambda Serverless Computing 기술을 활용한 효율적인 딥러닝 기반 이미지 인식 서비스 시스템)

  • Lee, Hyunchul;Lee, Sungmin;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.6
    • /
    • pp.177-186
    • /
    • 2020
  • Recent advances in deep learning technology have improved image recognition performance in the field of computer vision, and serverless computing is emerging as the next generation cloud computing technology for event-based cloud application development and services. Attempts to use deep learning and serverless computing technology to increase the number of real-world image recognition services are increasing. Therefore, this paper describes how to develop an efficient deep learning based image recognition service system using serverless computing technology. The proposed system suggests a method that can serve large neural network model to users at low cost by using AWS Lambda Server based on serverless computing. We also show that we can effectively build a serverless computing system that uses a large neural network model by addressing the shortcomings of AWS Lambda Server, cold start time and capacity limitation. Through experiments, we confirmed that the proposed system, using AWS Lambda Serverless Computing technology, is efficient for servicing large neural network models by solving processing time and capacity limitations as well as cost reduction.

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

Predicting a Queue Length Using a Deep Learning Model at Signalized Intersections (딥러닝 모형을 이용한 신호교차로 대기행렬길이 예측)

  • Na, Da-Hyuk;Lee, Sang-Soo;Cho, Keun-Min;Kim, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.26-36
    • /
    • 2021
  • In this study, a deep learning model for predicting the queue length was developed using the information collected from the image detector. Then, a multiple regression analysis model, a statistical technique, was derived and compared using two indices of mean absolute error(MAE) and root mean square error(RMSE). From the results of multiple regression analysis, time, day of the week, occupancy, and bus traffic were found to be statistically significant variables. Occupancy showed the most strong impact on the queue length among the variables. For the optimal deep learning model, 4 hidden layers and 6 lookback were determined, and MAE and RMSE were 6.34 and 8.99. As a result of evaluating the two models, the MAE of the multiple regression model and the deep learning model were 13.65 and 6.44, respectively, and the RMSE were 19.10 and 9.11, respectively. The deep learning model reduced the MAE by 52.8% and the RMSE by 52.3% compared to the multiple regression model.

A Study on Peak Load Prediction Using TCN Deep Learning Model (TCN 딥러닝 모델을 이용한 최대전력 예측에 관한 연구)

  • Lee Jung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.251-258
    • /
    • 2023
  • It is necessary to predict peak load accurately in order to supply electric power and operate the power system stably. Especially, it is more important to predict peak load accurately in winter and summer because peak load is higher than other seasons. If peak load is predicted to be higher than actual peak load, the start-up costs of power plants would increase. It causes economic loss to the company. On the other hand, if the peak load is predicted to be lower than the actual peak load, blackout may occur due to a lack of power plants capable of generating electricity. Economic losses and blackouts can be prevented by minimizing the prediction error of the peak load. In this paper, the latest deep learning model such as TCN is used to minimize the prediction error of peak load. Even if the same deep learning model is used, there is a difference in performance depending on the hyper-parameters. So, I propose methods for optimizing hyper-parameters of TCN for predicting the peak load. Data from 2006 to 2021 were input into the model and trained, and prediction error was tested using data in 2022. It was confirmed that the performance of the deep learning model optimized by the methods proposed in this study is superior to other deep learning models.

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.