• Title/Summary/Keyword: Deep Learning Dataset

Search Result 815, Processing Time 0.026 seconds

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Sentence Filtering Dataset Construction Method about Web Corpus (웹 말뭉치에 대한 문장 필터링 데이터 셋 구축 방법)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1505-1511
    • /
    • 2021
  • Pretrained models with high performance in various tasks within natural language processing have the advantage of learning the linguistic patterns of sentences using large corpus during the training, allowing each token in the input sentence to be represented with appropriate feature vectors. One of the methods of constructing a corpus required for a pre-trained model training is a collection method using web crawler. However, sentences that exist on web may contain unnecessary words in some or all of the sentences because they have various patterns. In this paper, we propose a dataset construction method for filtering sentences containing unnecessary words using neural network models for corpus collected from the web. As a result, we construct a dataset containing a total of 2,330 sentences. We also evaluated the performance of neural network models on the constructed dataset, and the BERT model showed the highest performance with an accuracy of 93.75%.

A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea (Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구)

  • Eu-Ru Lee;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1371-1388
    • /
    • 2023
  • Floods are becoming more severe and frequent due to global warming-induced climate change. Water disasters are rising in Korea due to severe rainfall and wet seasons. This makes preventive climate change measures and efficient water catastrophe responses crucial, and synthetic aperture radar satellite imagery can help. This research created 1,423 water body learning datasets for individual water body regions along the Han and Nakdong waterways to reflect domestic water body properties discovered by Sentinel-1 satellite radar imagery. We created a document with exact data annotation criteria for many situations. After the dataset was processed, U-Net, a deep learning model, analyzed water body detection results. The results from applying the learned model to water body locations not involved in the learning process were studied to validate soil water body monitoring on a national scale. The analysis showed that the created water body area detected water bodies accurately (F1-Score: 0.987, Intersection over Union [IoU]: 0.955). Other domestic water body regions not used for training and evaluation showed similar accuracy (F1-Score: 0.941, IoU: 0.89). Both outcomes showed that the computer accurately spotted water bodies in most areas, however tiny streams and gloomy areas had problems. This work should improve water resource change and disaster damage surveillance. Future studies will likely include more water body attribute datasets. Such databases could help manage and monitor water bodies nationwide and shed light on misclassified regions.

Key Frame Detection Using Contrastive Learning (대조적 학습을 활용한 주요 프레임 검출 방법)

  • Kyoungtae, Park;Wonjun, Kim;Ryong, Lee;Rae-young, Lee;Myung-Seok, Choi
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.897-905
    • /
    • 2022
  • Research for video key frame detection has been actively conducted in the fields of computer vision. Recently with the advances on deep learning techniques, performance of key frame detection has been improved, but the various type of video content and complicated background are still a problem for efficient learning. In this paper, we propose a novel method for key frame detection, witch utilizes contrastive learning and memory bank module. The proposed method trains the feature extracting network based on the difference between neighboring frames and frames from separate videos. Founded on the contrastive learning, the method saves and updates key frames in the memory bank, witch efficiently reduce redundancy from the video. Experimental results on video dataset show the effectiveness of the proposed method for key frame detection.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

A Study on Attention Mechanism in DeepLabv3+ for Deep Learning-based Semantic Segmentation (딥러닝 기반의 Semantic Segmentation을 위한 DeepLabv3+에서 강조 기법에 관한 연구)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.55-61
    • /
    • 2021
  • In this paper, we proposed a DeepLabv3+ based encoder-decoder model utilizing an attention mechanism for precise semantic segmentation. The DeepLabv3+ is a semantic segmentation method based on deep learning and is mainly used in applications such as autonomous vehicles, and infrared image analysis. In the conventional DeepLabv3+, there is little use of the encoder's intermediate feature map in the decoder part, resulting in loss in restoration process. Such restoration loss causes a problem of reducing segmentation accuracy. Therefore, the proposed method firstly minimized the restoration loss by additionally using one intermediate feature map. Furthermore, we fused hierarchically from small feature map in order to effectively utilize this. Finally, we applied an attention mechanism to the decoder to maximize the decoder's ability to converge intermediate feature maps. We evaluated the proposed method on the Cityscapes dataset, which is commonly used for street scene image segmentation research. Experiment results showed that our proposed method improved segmentation results compared to the conventional DeepLabv3+. The proposed method can be used in applications that require high accuracy.

Feature Extraction on a Periocular Region and Person Authentication Using a ResNet Model (ResNet 모델을 이용한 눈 주변 영역의 특징 추출 및 개인 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1347-1355
    • /
    • 2019
  • Deep learning approach based on convolution neural network (CNN) has extensively studied in the field of computer vision. However, periocular feature extraction using CNN was not well studied because it is practically impossible to collect large volume of biometric data. This study uses the ResNet model which was trained with the ImageNet dataset. To overcome the problem of insufficient training data, we focused on the training of multi-layer perception (MLP) having simple structure rather than training the CNN having complex structure. It first extracts features using the pretrained ResNet model and reduces the feature dimension by principle component analysis (PCA), then trains a MLP classifier. Experimental results with the public periocular dataset UBIPr show that the proposed method is effective in person authentication using periocular region. Especially it has the advantage which can be directly applied for other biometric traits.

Automatic Extraction of Liver Region from Medical Images by Using an MFUnet

  • Vi, Vo Thi Tuong;Oh, A-Ran;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • This paper presents a fully automatic tool to recognize the liver region from CT images based on a deep learning model, namely Multiple Filter U-net, MFUnet. The advantages of both U-net and Multiple Filters were utilized to construct an autoencoder model, called MFUnet for segmenting the liver region from computed tomograph. The MFUnet architecture includes the autoencoding model which is used for regenerating the liver region, the backbone model for extracting features which is trained on ImageNet, and the predicting model used for liver segmentation. The LiTS dataset and Chaos dataset were used for the evaluation of our research. This result shows that the integration of Multiple Filter to U-net improves the performance of liver segmentation and it opens up many research directions in medical imaging processing field.

Lightweight Convolutional Neural Network (CNN) based COVID-19 Detection using X-ray Images

  • Khan, Muneeb A.;Park, Hemin
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.251-258
    • /
    • 2021
  • In 2019, a novel coronavirus (COVID-19) outbreak started in China and spread all over the world. The countries went into lockdown and closed their borders to minimize the spread of the virus. Shortage of testing kits and trained clinicians, motivate researchers and computer scientists to look for ways to automatically diagnose the COVID-19 patient using X-ray and ease the burden on the healthcare system. In recent years, multiple frameworks are presented but most of them are trained on a very small dataset which makes clinicians adamant to use it. In this paper, we have presented a lightweight deep learning base automatic COVID-19 detection system. We trained our model on more than 22,000 dataset X-ray samples. The proposed model achieved an overall accuracy of 96.88% with a sensitivity of 91.55%.

A Margin-based Face Liveness Detection with Behavioral Confirmation

  • Tolendiyev, Gabit;Lim, Hyotaek;Lee, Byung-Gook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.187-194
    • /
    • 2021
  • This paper presents a margin-based face liveness detection method with behavioral confirmation to prevent spoofing attacks using deep learning techniques. The proposed method provides a possibility to prevent biometric person authentication systems from replay and printed spoofing attacks. For this work, a set of real face images and fake face images was collected and a face liveness detection model is trained on the constructed dataset. Traditional face liveness detection methods exploit the face image covering only the face regions of the human head image. However, outside of this region of interest (ROI) might include useful features such as phone edges and fingers. The proposed face liveness detection method was experimentally tested on the author's own dataset. Collected databases are trained and experimental results show that the trained model distinguishes real face images and fake images correctly.