References
- E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640-651, 2017 https://doi.org/10.1109/TPAMI.2016.2572683
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9351, pp. 234-241, 2015
- T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017 Janua, pp. 936-944, 2017
- S. J. Kim and H. S. Kim, "Multi Tasking U-net 기반 파프리카 병해충 진단." Smart Media J., vol. 9, no. 1, pp. 16-22, 2020 https://doi.org/10.30693/SMJ.2020.9.1.16
- M. Langkvist, L. Karlsson, and A. Loutfi, "Inception-v4, Inception ResNet and the Impact of Residual Connections on Learning," Pattern Recognit. Lett., vol. 42, no. 1, pp. 11-24, 2014 https://doi.org/10.1016/j.patrec.2014.01.008
- M. Scully, V. Magnotta, C. Gasparovic, P. Pelligrimo, D. Feis, and H. J. Bockholt, "3D Segmentation In The Clinic: A Grand Challenge II at MICCAI 2008 - MS Lesion Segmentation," Miccai, pp. 1-6, 2008
- X. Zhuang, "Challenges and methodologies of fully automatic whole heart segmentation: A review," J. Healthc. Eng., vol. 4, no. 3, pp. 371-407, 2013 https://doi.org/10.1260/2040-2295.4.3.371
- G. Litjens et al., "Evaluation of prostate segmentation algorithms for MRI: the PROMISE12," Med Image Anal, vol. 18, no. 2, pp. 359-373, 2015 https://doi.org/10.1016/j.media.2013.12.002
- O. A. J. Del Toro et al., "VISCERAL -VISual concept extraction challenge in RAdioLogy: ISBI 2014 challenge organization," CEUR Workshop Proc., vol. 1194, pp. 6-15, 2014
- A. Basher, S. Ahmed, and H. Y. Jung, "One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network," Smart Media J., vol. 9, no. 2, pp. 22-32, 2020 https://doi.org/10.30693/smj.2020.9.2.22
- N. C. F. Codella et al., "Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)," Proc. Int. Symp. Biomed. Imaging, vol. 2018 April, pp. 168-172, 2018
- B. van Ginneken, T. Heimann, and M. Styner, "3-D segmentation in the clinic: A grand challeng," Int. Conf. Med. Image Comput. Comput. Assist. Interv., vol. 10, pp. 7-15, 2007
- Y. Boykov et al., "Liver Segmentation in CT Data : A Segmentation Refinement Approach," Methods, vol. 70, no. c, pp. 109-131, 2007
- Y. Boykov and G. Funka Lea, "Graph cuts and efficient N-D image segmentation," Int. J. Comput. Vis., vol. 70, no. 2, pp. 109-131, 2006 https://doi.org/10.1007/s11263-006-7934-5
- W. A. Barrett and E. N. Mortensen, "In teractive live-wire boundary extraction," Med. Image Anal., vol. 1, no. 4, pp. 331-341, 1997 https://doi.org/10.1016/S1361-8415(97)85005-0
- A. Beck and V. Aurich, "Hepatux - a semiautomatic liver segmentation system," 3D Segmentation Clin. A Gd. Chall., pp. 225-233, 2007
- B. M. Dawant, R. Li, B. Lennon, and S. Li, "Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set," 3D Segmentation Clin. A Gd. Chall., pp. 215-221, 2007
- A. Wimmer, G. Soza, and J. Hornegger, "Two stage semi-automatic organ segmentation framework using radial basis functions and level sets," 3D segmentation Clin. a Gd. challenge, LNCS, Springer Berlin, Heidelb., pp. 207-214, 2007
- P. Slagmolen, A. Elen, D. Seghers, D. Loeckx, F. Maes, and K. Haustermans, "Atlas based liver segmentation usi ng nonrigid registration with a B-spline transformation model," Proc. MICCAI Work. 3D segmentation Clin. a Gd. Chall. Chall., pp. 197-206, 2007
- H. Lamecker, T. Lange, and M. Seebass, "Segmentation of the liver using a 3D statistical shape model," Konrad-Zus- Zent rum fur Informationstechnik Berlin, vol. 09, no. April, pp. 27, 2004
- D. Kainmueller, T. Lange, and H. Lamecker, "Shape constrained automatic segmentation of the liver based on a heuristic intensity model," Proc. MICCAI Work. 3D Segmentation Clin. A Gd. Chall., pp. 109-116, 2007
- R. Susomboon, "A hybrid approach for liver segmentation," ... Segmentation Clin. ..., vol. i, pp. 151-160, 2007
- L. Rusko and G. Bekes, "Fully automatic liver segmentation for contrast-enhanced CT images," Int. Conf. Med. Image Comput. Co mput. Interv. Segmentation Clin. a Gd. challenge, 2007, pp. 143-150, 2007
- S. J. Lim, Y. Y. Jeong, and Y. S. Ho, "Automatic liver segmentation for volume measurement in CT Images," J. Vis. Commun. Image Represent., vol. 17, no. 4, pp. 860-875, 2006 https://doi.org/10.1016/j.jvcir.2005.07.001
- A. B. B, I. Diamant, E. Klang, and M. Amitai, "Fully Convolutional Network for Liver," Deep Learn. Data Labeling Med. Appl., vol. 1, pp. 77-85, 2016
- H. T. Tran, A. R. Oh, I. S. Na, and S. H. Kim, "Liver Segmentation and 3D Modeling from Abdominal CT Images," Smart Media J., vol. 5, no. 1, pp. 49-54, 2016
- P. Bilic et al., "The Liver Tumor Segmentation Benchmark (LiTS)," pp. 1-43, 2019
- X. Li, H. Chen, X. Qi, Q. Dou, C. W. Fu, and P. A. Heng, "H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes," IEEE Trans. Med. Imaging, vol. 37, no. 12, pp. 2663-2674, 2018 https://doi.org/10.1109/TMI.2018.2845918
- S. Chen, K. Ma, and Y. Zheng, "Med3D: Transfer Learning for 3D Medical Image Analysis," pp. 1-12, 2019
- Y. Yuan, "Hierarchical Convolutional-Deconvolutional Neural Networks for Automatic Liver and Tumor Segmentation," vol. i, pp. 3-6, 2017
- A. Buslaev, A. Parinov, E. Khvedchenya, V. I. Iglovikov, and A. A. Kalinin, "Albumentations: fast and flexible image augmentations," 2018
- C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10553 LNCS, pp. 240-248, 2017