• Title/Summary/Keyword: Deep Learning AI

Search Result 732, Processing Time 0.032 seconds

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Deep Reinforcement Learning-Based Cooperative Robot Using Facial Feedback (표정 피드백을 이용한 딥강화학습 기반 협력로봇 개발)

  • Jeon, Haein;Kang, Jeonghun;Kang, Bo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.264-272
    • /
    • 2022
  • Human-robot cooperative tasks are increasingly required in our daily life with the development of robotics and artificial intelligence technology. Interactive reinforcement learning strategies suggest that robots learn task by receiving feedback from an experienced human trainer during a training process. However, most of the previous studies on Interactive reinforcement learning have required an extra feedback input device such as a mouse or keyboard in addition to robot itself, and the scenario where a robot can interactively learn a task with human have been also limited to virtual environment. To solve these limitations, this paper studies training strategies of robot that learn table balancing tasks interactively using deep reinforcement learning with human's facial expression feedback. In the proposed system, the robot learns a cooperative table balancing task using Deep Q-Network (DQN), which is a deep reinforcement learning technique, with human facial emotion expression feedback. As a result of the experiment, the proposed system achieved a high optimal policy convergence rate of up to 83.3% in training and successful assumption rate of up to 91.6% in testing, showing improved performance compared to the model without human facial expression feedback.

Development of the Artificial Intelligence Literacy Education Program for Preservice Secondary Teachers (예비 중등교사를 위한 인공지능 리터러시 교육 프로그램 개발)

  • Bong Seok Jang
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.65-70
    • /
    • 2024
  • As the interest in AI education grows, researchers have made efforts to implement AI education programs. However, research targeting pre-service teachers has been limited thus far. Therefore, this study was conducted to develop an AI literacy education program for preservice secondary teachers. The research results revealed that the weekly topics included the definition and applications of AI, analysis of intelligent agents, the importance of data, understanding machine learning, hands-on exercises on prediction and classification, hands-on exercises on clustering and classification, hands-on exercises on unstructured data, understanding deep learning, application of deep learning algorithms, fairness, transparency, accountability, safety, and social integration. Through this research, it is hoped that AI literacy education programs for preservice teachers will be expanded. In the future, it is anticipated that follow-up studies will be conducted to implement relevant education in teacher training institutions and analyze its effectiveness.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

A Study on Deep Learning-Based Detection of AI-Generated News (딥러닝 기반 인공지능 생성 뉴스 탐지)

  • Ye-Hun Chang
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.698-700
    • /
    • 2024
  • 생성형 인공지능의 발전으로 AI기자가 작성한 기사가 점차 증가될 것으로 전망되고 있다. 시간 절약, 경제성 등의 장점에도 불구하고 인공지능이 작성한 뉴스 내 허위정보 등으로 혼란이 사회적 문제로 제기되고, 이를 악용한 가짜뉴스 생성의 우려에 따라 구축모델의 필요성이 제기되고 있다. 이에 따라 실제 기사와 AI 작성 기사를 KoBART, KoELECTRA 모델과 두 모델을 앙상블한 모델에 적용시켰고, 그 결과 KoBART 모델의 Accuracy가 0.9995로 가장 높은 지표를 보였다.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

Development of a Ream-time Facial Expression Recognition Model using Transfer Learning with MobileNet and TensorFlow.js (MobileNet과 TensorFlow.js를 활용한 전이 학습 기반 실시간 얼굴 표정 인식 모델 개발)

  • Cha Jooho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2023
  • Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.

Trends in the Adoption of Artificial Intelligence for Enhancing Built Environment Efficiency: A Case Study Analysis

  • Habib SADRI;Ibrahim YITMEN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.479-486
    • /
    • 2024
  • This study reviews the recently conducted case studies to explore the innovative integration of Artificial Intelligence (AI) and Machine Learning (ML) in the domain of building facility management and predictive maintenance. It systematically examines recent developments and applications of advanced computational methods, emphasizing their role in enhancing asset management accuracy, energy efficiency, and occupant comfort. The study investigates the implementation of various AI and ML techniques, such as regression methods, Artificial Neural Networks (ANNs), and deep learning models, demonstrating their utility in asset management. It also discusses the synergistic use of ML with domain-specific technologies such as Building Information Modeling (BIM), Information Systems (GIS), and Digital Twin (DT) technologies. Through a critical analysis of current trends and methodologies, the paper highlights the importance of algorithm selection based on data attributes and operational challenges in deploying sophisticated AI models. The findings underscore the transformative potential of AI and ML in facility management, offering insights into future research directions and the development of more effective, data-driven management strategies.

A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning (트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용)

  • Woo, Deock-Chae;Moon, Hyun Sil;Kwon, Suhnbeom;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

Research on a statistics education program utilizing deep learning predictions in high school mathematics (고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램 연구)

  • Hyeseong Jin;Boeuk Suh
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.209-231
    • /
    • 2024
  • The education sector is undergoing significant changes due to the Fourth Industrial Revolution and the advancement of artificial intelligence. Particularly, the importance of education based on artificial intelligence is being emphasized. Accordingly, the purpose of this study is to develop a statistics education program using deep learning prediction in high school mathematics and to examine the impact of such statistically problem-solvingcentered statistics education programs on high school students' statistical literacy and computational thinking. To achieve this goal, a statistics education program using deep learning prediction applicable to high school mathematics was developed. The analysis revealed that students' understanding of context improved through experiencing how data was generated and collected. Additionally, they enhanced their comprehension of data variability while exploring and analyzing various datasets. Moreover, they demonstrated the ability to critically analyze data during the process of validating its reliability. In order to analyze the impact of the statistics education program on high school students' computational thinking, a paired sample t-test was conducted, confirming a statistically significant difference in computational thinking between before and after classes (t=-11.657, p<0.001).