DOI QR코드

DOI QR Code

Research on a statistics education program utilizing deep learning predictions in high school mathematics

고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램 연구

  • Received : 2024.03.04
  • Accepted : 2024.05.08
  • Published : 2024.05.31

Abstract

The education sector is undergoing significant changes due to the Fourth Industrial Revolution and the advancement of artificial intelligence. Particularly, the importance of education based on artificial intelligence is being emphasized. Accordingly, the purpose of this study is to develop a statistics education program using deep learning prediction in high school mathematics and to examine the impact of such statistically problem-solvingcentered statistics education programs on high school students' statistical literacy and computational thinking. To achieve this goal, a statistics education program using deep learning prediction applicable to high school mathematics was developed. The analysis revealed that students' understanding of context improved through experiencing how data was generated and collected. Additionally, they enhanced their comprehension of data variability while exploring and analyzing various datasets. Moreover, they demonstrated the ability to critically analyze data during the process of validating its reliability. In order to analyze the impact of the statistics education program on high school students' computational thinking, a paired sample t-test was conducted, confirming a statistically significant difference in computational thinking between before and after classes (t=-11.657, p<0.001).

4차 산업혁명과 인공지능의 발전으로 교육 분야에서 많은 변화가 일어나고 있다. 특히, 인공지능을 기반으로 하는 교육의 중요성이 강조되고 있다. 이러한 흐름에 따라 본 연구에서는 고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램을 개발하고 이러한 통계적 문제해결 과정 중심의 통계교육 프로그램이 고등학생들의 통계적 소양 및 컴퓨팅 사고력에 미치는 영향을 고찰하고자 한다. 먼저, 본 연구에서는 고등학교 수학에 적용할 수 있는 딥러닝 예측을 이용한 통계교육 프로그램을 개발하였고, 이를 실제 수업상황에 적용하여 분석하였다. 분석 결과, 학생들은 자료가 어떤 맥락에서 생성되고 수집되었는지 경험함으로써 맥락에 대한 이해도가 향상되었으며, 다양한 데이터셋을 탐색하고 분석하는 과정에서 자료의 변이성에 대한 이해도가 높아졌고, 자료의 신뢰성을 검증하는 과정에서 자료를 비판적으로 분석하는 능력을 보였다. 통계교육 프로그램이 고등학생들의 컴퓨팅 사고력에 미치는 영향을 분석하고자 대응 표본 t-검정 시행하였고, 수업 전과 후의 컴퓨팅 사고력 (t=-11.657, p<0.001)은 통계적으로 유의한 차이가 있음을 확인하였다.

Keywords

References

  1. Computer Science Teachers Association (CSTA) & International Society for Technology in Education (ISTE). (2011). Computational thinking in K-12 education teacher resource (2nd ed. ). ISTE. https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_Resources_2ed.pdf
  2. Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE ) report pre-K-12. American Statistical Association.
  3. Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70 (1), 1-25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  4. Graham, A. (2006). Developing thinking in statistics. The Open University in Association with Paul Chapman Publishing.
  5. Han, S. K., Ryu, M. Y., & Kim, T. R. (2021). Artificial intelligence education for aI thinking. Sungandang.
  6. Hong, S. J., & Choi, I. S. (2020). Concept and application of artificial intelligence in school education. KICE.
  7. Jin, H. S. (2024). Study research on a statistics education program utilizing deep learning predictions in high school mathematics [Master's thesis, Chungnam National University].
  8. Ju, M. K., Kim, S. Y., Bae, K. T., Jeong, H. S., & Jing, S. Y. (2018). An analysis of high school students' statistical literacy: students' achievement and difficulties of statistical inquiry. School Mathematics, 20 (4), 661-683. https://doi.org/10.29275/sm.2018.12.20.4.661
  9. Kim, M. Y., & Kim, S. Y. (2018). Korean secondary students computational thinking based on problem solving. The Journal of Learner-Centered Curriculum and Instruction, 18 (16), 807-830. http://dx.doi.org/10.22251/jlcci.2018.18.16.807
  10. Kim, S. Y., & Choi, M, K. (2022). AI-based educational platform analysis supporting personalized mathematics learning. Communications of Mathematical Education, 36 (3), 417-438. https://doi.org/10.7468/jksmee.2022.36.3.417
  11. Ko, E. S., & Park, M. S. (2017). Pre-service elementary school teachers' statistical literacy related to statistical problem solving. School Mathematics, 19 (3), 443-459.
  12. Kwon, O, N., Oh, S. J., Yoon, J. E., Lee, K. W., Shin, B. C., & Jung, W. (2023). Analyzing mathematical performances of ChatGPT: Focusing on the solution of national assessment of educational achievement and the college scholastic ability test. Communications of Mathematical Education, 37 (2), 233-256. https://doi.org/10.7468/jksmee.2023.37.2.233
  13. Lee, J. H., Han, C. R., & Lim, W. (2023a). Guidelines for big data projects in artificial intelligence mathematics education. The Mathematical Education, 62 (2), 289-302. https://doi.org/10.7468/mathedu.2023.62.2.289
  14. Lee, J. H., Lee, S, G., & Ham, Y. M. (2022). Case study on college calculus Education for vocational high school graduates with coding. Communications of Mathematical Education, 36 (4), 611-626. https://doi.org/10.7468/jksmee.2022.36.4.611
  15. Lee, J. Y., & Rim, H. M. (2021). Analysis of textbooks on statistical problem-solving process and statistical literacy. Journal of the Korean School Mathematics Society, 24 (2), 191-216. http://doi.org/10.30807/ksms.2021.24.2.002
  16. Lee, S. G., Nam, Y., Lee, J. H., & Kim, U. K. (2023b). A study on teaching of convolution in engineering mathematics and artificial intelligence. Communications of Mathematical Education, 37 (2), 277-297. https://doi.org/10.7468/jksmee.2023.37.2.277
  17. Lee, Y. J. (2023). An analysis of pre-service teachers' mathematics lesson design using ChatGPT. Communications of Mathematical Education, 37 (3), 497-516. https://doi.org/10.7468/jksmee.2023.37.3.497
  18. Lee, Y. M., Han, C. L., & Lim, W. (2023c). Analysis of artificial intelligence mathematics textbooks: Vectors and matrices. Communications of Mathematical Education, 37 (3), 443-465. https://doi.org/10.7468/jksmee.2023.37.3.443
  19. MacKay, R. J., & Oldford, W. (1994). Statistics 231 Course Notes Full 1994 . University of Waterloo.
  20. Ministry of Education (2015). Mathematics curriculum (# 2015-74 supplement 8). Ministry of Education.
  21. Ministry of Education (2020). Informatics curriculum (# 2022-23 supplement 10). Ministry of Education.
  22. Ministry of Education (2022a). The general overview of primary and secondary school curriculum (# 2022-33 supplement 1). Ministry of Education.
  23. Ministry of Education (2022b). Mathematics curriculum (# 2022-33 supplement 8). Ministry of Education.
  24. Oh, S. J. (2023). Effective ChatGPT prompts in mathematical problem solving: Focusing on quadratic equations and quadratic functions. Communications of Mathematical Education, 37 (3), 545-567. https://doi.org/10.7468/jksmee.2023.37.3.545
  25. Park, H. S. (2020). Studying machine learning + Deep learning alone. Hanbit.
  26. Park, H. Y., Son, B. E., & Ko, H. K. (2022). Study on the mathematics teaching and learning artificial intelligence platform analysis. Communications of Mathematical Education, 36 (1), 1-21. https://doi.org/10.7468/jksmee.2022.36.1.1
  27. Park, J. S. (2023). Application of computational thinking based on moral machine for digital citizenship education. Social Studies Education, 62 (1), 27-46. https://doi.org/10.37561/sse.2023.3.62.1.27
  28. Ryu, M. Y., & Han, S. K. (2022). Development and application of digital-based collaboration intelligence teaching and learning model. The Journal of Education, 42 (2), 117-130. https://doi.org/10.25020/je.2022.42.2.117
  29. Sim, Y. H., Kim, J. H., & Kwon, M, S. (2023). Secondary mathematics teachers' perceptions on artificial intelligence (AI) for math and math for artificial intelligence (AI). Communications of Mathematical Education, 37 (2), 159-181. https://doi.org/10.7468/jksmee.2023.37.2.159
  30. Watson, J. M., & Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2 (2), 3-46. https://doi.org/10.52041/serj.v2i2.553
  31. Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67 (3), 223-248. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
  32. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215