• Title/Summary/Keyword: Decreasing current density

Search Result 115, Processing Time 0.027 seconds

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Magnetic Anisotropy in High $T_c\;Y_1Ba_2Cu_3O_{7-y}$ Superconductor (고온초전도체 $Y_1Ba_2Cu_3O_{7-y}$의 자기이방성)

  • Kim, Mun-Seok;Yu, Seong-Cho;Im, U-Yeong;Baek, Jong-Seong
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.228-232
    • /
    • 1992
  • Magnetic properties of grain aligned high $T_c\;Y_1Ba_2Cu_3O_{7-y}$ superconductor are inverstigated. Grain-aligned superconductors have magnetic anisotropy in the Cu-O layer like single crystals. The lower critical field $H_{c1},$ measured at the temperature range of 2 K up to 77 K, is found to be decreasing linearly as temperature goes up. Moreover, it decreaes more rapidly when the Cu-O layer is perpendicular to the external magnetic field. The temperature dependence of the magnetic susceptibility shows that the value of magnetic susceptibility, $4{\pi}\;X,$ is close to -1 at low temperature. The intra grain critical current density $J_c,$ obtained from the Bean's critical state model, is found to be comparable to that of single crystal superconductors.

  • PDF

Effect of Magnetic Field Annealing on Microstructure and Magnetic Properties of FeCuNbSiB Nanocrystalline Magnetic Core with High Inductance

  • Fan, Xingdu;Zhu, Fangliang;Wang, Qianqian;Jiang, Mufeng;Shen, Baolong
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • Transverse magnetic field annealing (TFA) was carried out on $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ nano-crystalline magnetic core with the aim at decreasing coercivity ($H_c$) while keeping high inductance ($L_s$). The magnetic field generated by direct current (DC) was applied on the magnetic core during different selected annealing stages and it was proved that the nanocrystalline magnetic core achieved lowest $H_c$ when applying transverse field during the whole annealing process (TFA1). Although the microstructure and crystallization degree of the nanocrystalline magnetic core exhibited no obvious difference after TFA1 compared to no field annealing, the TFA1 sample showed a more uniform nanostructure with a smaller mean square deviation of grain size distribution. $H_c$ of the nanocrystalline magnetic core annealed under TFA1 decreased along with the increasing magnetic field. As a result, the certain size nanocrystalline magnetic core with low $H_c$ of 0.6 A/m, low core loss (W at 20 kHz) of 1.6 W/kg under flux density of 0.2 T and high $L_s$ of $13.8{\mu}H$ were obtained after TFA1 with the DC intensity of 140 A. The combination of high $L_s$ with excellent magnetic properties promised this nanocrystalline alloy an outstanding economical application in high frequency transformers.

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF

Preparation of low refractive index $SiO_xF_y$ optical thin films by ion beam assisted deposition (이온빔보조증착으로 제작한 저굴절률 $SiO_xF_y$ 광학박막의 특성 연구)

  • 이필주;황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.162-167
    • /
    • 1998
  • $SiO_xF_y$ optical thin films of lower refractive indices than glass substrates were fabricated by the CF$_4$ ion beam assisted deposition method and the optical, structural and chemical properties of them were investigated. Refractive index of $SiO_xF_y$ films was varied from 1.455 to 1.394 by decreasing the anode voltage or from 1.462 to 1.430 by increasing the current density of end-Hall ion source. FT-IR and XPS analyses show that as the F concentration increases, the Si-O bond at $1080m^{-1}$ shifts to higher wavenumber, the OH bonds are reduced drastically, and the fluorine atoms at the air-film interface are desorbed out by reacting with $H_2O$ in the atmosphere. $SiO_xF_y$ thin films are amorphous by the XRD analysis and have the compressive stress below 0.3 GPa. As an application of $SiO_xF_y$ thin films a two-layer antireflection coating was fabricated using a $SiO_xF_y$ film as a low refractive index layer and a Si film as an absorbing one.

  • PDF

Microstructures and Electrical Properties of $RuO_2$Bottom Electrode for Ferroelectric Thin Films

  • Shin, Woong-Chul;Yang, Cheol-Hoon;Jun-SiK Hwang;Yoon, Soon-Gil
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.263-268
    • /
    • 1997
  • RuO$_3$ thin films were deposited on Si(100) substrate at low temperatures by hot-wall metalorganic chemical vapor deposition. Bis(cyclopentadienyl) ruthenium, Ru$(C_5H_5)_2$, was used as the precursor RuO$_2$single phase was obtained at a low deposition temperature of 25$0^{\circ}C$ and the crystallinity of RuO$_2$thin films improved with increasing deposition temperature. RuO$_2$thin films grow perpendicularly to the substrate and show the columnar structure. The grain size of RuO$_2$films drastically increases with increasing the deposition temperature. The resistivity of the 180 nm-thick RuO$_2$thin films deposited at 27$0^{\circ}C$ was 136 $\mu$$\Omega$-cm and increased with decreasing film thickness. SrBi$_2Ta_2O_4$ thin films deposited by rf magnetron sputtering on the RuO$_2$bottom electrodes showed a fatigue-free characteristics up to ~10$^10$ cycles under 5 V bipolar square pulses and the remanent polarization, 2 P$_r$ and the coercive field, 2 E, were 5.2$\mu$C/$\textrm{cm}^2$ and 76.0 kV/cm, respectively, for an applied voltage of 5 V The leakage current density was about 7.0$\times$10$^{-6}$ A/$\textrm{cm}^2$ at 150 kV/cm.

  • PDF

Fabrication and Post-Annealing Effects of Ferroelectric $Sr_xBi_yTa_2O_{9+\alpha}$(SBT) Thin Films by MOD Process (MOD법에 의한 강유전성 $Sr_xBi_yTa_2O_{9+\alpha}$(SBT) 박막의 제조 및 후열처리 효과에 관한 연구)

  • 정병직;신동석;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.229-236
    • /
    • 1998
  • Ferroelectric $Sr_xBi_yTa_2O_{9+\alpha}$/(0.7$\leqSr\leq1.0,\; 2.0\leqBi\leq2.6)$ solutions were prepared by MOD (Metalorganic Deposition) process. These solutions were made into thin films with thickness ranging from 1500~2000${\AA}$ by spin coating. The phase transformation of the SBT thin films by variation of annealing temperature and annealing time were observed using high temperature XRD and SEM. The crystallization and grain growth of SBT thin film were accomplished at $800^{\circ}C$ for 30 minutes after deposition of Pt top electrode by sputtering to prevent electrical breakdown. Ferroelectric properties of the SBT thin films were measured in the range of $\pm$3V\; and\; \pm5V$. The specimen with composition ratio of Sr/Bi/Ta (0.8/2.4/2.0) has the excellent ferroelectric properties ; $2P_r = 10.5,\; 13.2\muC/cm^2 \;at\; \pm3V\; and\; \pm5V$ respectively. Observing the post annealed Pt/SBT/Pt interface by SEM, it was found that Pt electrode sputtered on to the SBT thin film penetrated into the hollow on the SBT thin film, thus decreasing the effective insulation thickness. The effective insulation thickness recovered by post annealing, and this was confirmed by leakage current density measurement.

  • PDF

Electrical Characteristics of AlGaN/GaN HEMT at Low Temperature (저온에서 AlGaN/GaN HEMT의 전기적 특성 변화)

  • Kang, Min Sung;Park, Yong Woon;Choi, Cheol-Jong;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.344-349
    • /
    • 2018
  • Low temperature variation of electrical characteristics for AlGaN/GaN/HEMT was studied. To investigate the effect of temperatures, transistor was cool down to $-178^{\circ}C$ and electrical characteristics were measured. The drain current density of an AlGaN/GaN HEMT with a gate length of $2{\mu}m$ was increased from 264 mA/mm to 388 mA/mm and the maximum transconductance was increased from 105 mS/mm to 134 mS/mm by decreasing the temperature to $-108^{\circ}C$. Also, the threshold voltage was shifted -0.39 V with the temperature. The reason for the variations was seemed to the reduced channel resistance corresponding to the temperature. However, most of the variation of the electrical characteristics takes places above $-108^{\circ}C$.

Effect of Sigma Phase on Electrochemical Corrosion Characteristics of a Deposited Metal of ER2594 (ER2594 용착금속의 전기화학적 부식특성에 미치는 시그마상의 영향)

  • Jung, Byong-Ho;Kim, Si-Young;Seo, Gi-Jeong;Park, Joo-Young
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.75-81
    • /
    • 2015
  • A deposited metal specimen of ER2594 which is a super duplex steel welding wire used to investigate the effect of sigma(${\sigma}$) phase on electrochemical corrosion characteristics was prepared by gas tungsten arc welding. Aging treatment was conducted for the specimen at the temperature range of $700^{\circ}C$ to $900^{\circ}C$ for 5 to 300 minutes after annealing at $1050^{\circ}C$. Corrosion current density has decreased a little with an increase of aging time over 60 minutes at $700^{\circ}C$ to $900^{\circ}C$ and the uniform corrosion of deposited metal had more influence on the precipitation of ferrite than the precipitation of sigma phase. Therefore, the precipitation of sigma phase did not have much effect on the uniform corrosion. Pitting potential representing pitting corrosion has shown decreasing tendency as the precipitation of sigma phase increased. The degree of sensitization representing intergranular corrosion has shown increasing tendency as the precipitation of sigma phase increased at $700^{\circ}C$ to $800^{\circ}C$, while it has decreased at $900^{\circ}C$ for 60 to 300 minutes.