DOI QR코드

DOI QR Code

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition

유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구

  • Kim, Jung-Sub (Department of Materials Science and Engineering, Seoul National University) ;
  • Ha, Seung-Kyu (Nano Convergence Devices Center, Korea Institute of Science and Technology) ;
  • Yang, Chang-Jae (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Jae-Yel (Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Se-Hun (Department of Materials Science and Engineering, Seoul National University) ;
  • Choi, Won-Jun (Nano Convergence Devices Center, Korea Institute of Science and Technology) ;
  • Yoon, Eui-Joon (Department of Materials Science and Engineering, Seoul National University)
  • 김정섭 (서울대학교 재료공학부) ;
  • 하승규 (한국과학기술연구원 나노융합소자센터) ;
  • 양창재 (서울대학교 재료공학부) ;
  • 이재열 (서울대학교 재료공학부) ;
  • 박세훈 (서울대학교 재료공학부) ;
  • 최원준 (한국과학기술연구원 나노융합소자센터) ;
  • 윤의준 (서울대학교 재료공학부)
  • Received : 2010.02.16
  • Accepted : 2010.03.17
  • Published : 2010.05.30

Abstract

We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

유기금속화학기상증착법으로 적층 InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) 구조를 성장하여 n-i-n 구조의 적외선 수광소자를 제작하였으며, PL (photoluminescence) 발광 특성 및 암전류 특성을 분석하였다. 동일한 조건으로 양자점을 적층하였을 때 크기 및 밀도의 변화에 의한 이중 PL peak을 관찰하였으며, TMIn의 유량을 조절함으로써 단일 peak을 갖는 균일한 크기의 양자점 적층 구조를 성장할 수 있었다. 적외선 수광소자 구조를 성장함에 있어서, 상부의 n-형 GaAs의 성장 온도가 600도 이상인 경우 PL 발광 세기가 급격히 감소하였고 이에 따른 암전류의 증가를 관찰하였다. 0.5 V 인가 전압에서 암전류의 온도 의존성에 대한 활성화 에너지의 크기는 성장온도가 580도인 경우 106 meV이고, 650도의 경우는 48 meV로 급격이 낮아졌다. 이는 고온의 성장 온도에 의한 InAs 양자점과 $In_{0.1}Ga_{0.9}As$ 양자우물구조 계면에서의 열적 상호 확산에 의하여 비발광 천이가 증가되었기 때문이다.

Keywords

References

  1. A. Rogalski, Progress in Quantum Electronics 27, 59 (2003). https://doi.org/10.1016/S0079-6727(02)00024-1
  2. 남형도, 송진동, 최원준, 조운조, 이정일, 최정우, 양해석, 한국진공학회지 15, 216 (2006).
  3. S. D. Gunapala, S. V. Bandara, C. J. hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y.-C. Chang, and C. A. Shott, IEEE J. Quantum Electron 43, 230 (2007). https://doi.org/10.1109/JQE.2006.889645
  4. D. Z. Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, Appl. Phys. Lett. 94, 111107 (2009). https://doi.org/10.1063/1.3095812
  5. 김준오, 신현욱, 최정우, 이상준, 김창수, 노삼규, 한국진공학회지 18, 108 (2009)
  6. L. Fu, I. McKerracher, H. H. Tan, C. Jagadish, N. Vukmirovic, and P. Harrison, Appl. Phys. Lett. 91, 073515 (2007). https://doi.org/10.1063/1.2770765
  7. J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A. A. Quivy, B. Movaghar, and M. Razeghi, Appl. Phys. Lett. 88, 121102 (2006). https://doi.org/10.1063/1.2188056
  8. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonic. Tech. Lett. 16, 1361 (2004). https://doi.org/10.1109/LPT.2004.825974
  9. Y. Lee, E. Ahn, J. Kim, P. Moon, C. Yang, E. Yoon, H. Lim, and H. Cheong, Appl. Phys. Lett. 90, 033105 (2007). https://doi.org/10.1063/1.2432285
  10. J. Kim, C. Yang, U. Sim, J. Lee, E. Yoon, and Y. Lee, Thin Solid Films 517, 3963 (2009). https://doi.org/10.1016/j.tsf.2009.01.170
  11. J. Tatebayashi, Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo, and A. Kuramata, Appl. Phys. Lett. 85, 1024 (2004). https://doi.org/10.1063/1.1781741
  12. 조중석, 김상효, 황보수정, 장재호, 최현광, 전민현, 한국진공학회지 18, 352 (2009).
  13. G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr., Appl. Phys. Lett. 66, 3161 (1995) https://doi.org/10.1063/1.113709
  14. E. T. Kim, Z. Chen, M. Ho, and A. Madhukar, J. Vac. Sci. Technol. B 20, 1188 (2002). https://doi.org/10.1116/1.1463695
  15. T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, J Appl. Phys. 104, 113115 (2008). https://doi.org/10.1063/1.3039799
  16. G. B. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice 2nd edition (Academic Press, San Diego, 1999), pp. 393.
  17. J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, Appl. Phys. Lett. 86, 053107 (2005). https://doi.org/10.1063/1.1857075

Cited by

  1. Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures vol.24, pp.1, 2015, https://doi.org/10.5757/ASCT.2015.24.1.22
  2. Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction vol.20, pp.4, 2011, https://doi.org/10.5757/JKVS.2011.20.4.300
  3. Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.442
  4. Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.92