• Title/Summary/Keyword: Decoupled Control

Search Result 197, Processing Time 0.024 seconds

Nonlinear Control for A Robot Manipulator (로봇 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1333-1342
    • /
    • 1992
  • This paper deals with a robot manipulator having actuator which is described by equation $D(q)\ddot{q}=u-P(q\;\dot{q},\;\ddot{q})$ where u(t) is a control input. We employ two steps of controller design procedures. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis of the effect of uncertainty of the dynamics, which we study using robustness results in time domain based on a Lyapunov equation and the total stability theorem. Using this approach we simulate the performance of controller of a robot manipulator.

  • PDF

A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart (수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구)

  • Chai, Chang-Hyun;Kim, Seong-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.

Application of decoupling control method to the multivariable generating system (다변수 발전설비 모델에 대한 비간섭 제어기법 적용 연구)

  • 홍석교;김동화
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 1992
  • In this paper, application of decoupling control method of multivariable system by state feedback to turbo-generating system with 2-input and 2-output is studied. The results of simulation shows tat turbo-generating system is canonically decoupled, and can be controlled against the change of load or frequency by feedback gain.

  • PDF

Three-Phase Decoupled Current Control under Unbalanced Condition for 1MW Power Conditioning System (실시간 시뮬레이터를 이용한 1MW 전력변환장치의 3상 불평형 비간섭 전류제어 검증)

  • Kim, Wonkyung;Park, Kiwoo;Lee, Jiheon;Koh, Kwangsoo;Lee, Yun-Jae;Kim, Heejung
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.425-426
    • /
    • 2015
  • 본 논문에서는 실시간 시뮬레이터를 이용하여 1MW PCS(Power Conditioning System)의 불평형 비간섭 전류제어(Unbalanced Current Control under Unbalanced Condition) 알고리즘을 검증하였다. 3상 불평형 발생 시, 기존의 전류제어는 전압의 불안정으로 인해 전류의 목표 값이 흔들리는 현상을 보인다. 하지만, 3상 불평형 비간섭 제어는 불평형 상황 전압과 전류를 정상과 역상 성분으로 나누고, 이를 독립적으로 제어함으로써 더욱 우수한 성능을 가진다. 본 논문은 1MW PCS의 HILS(Hardware-In-the-Loop Simulation) 환경을 구축하여 실시간 시뮬레이터에서 실제 출력되는 전류의 불평형을 확인하고, 이를 개선하는 것을 검증하였다.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

Decoupled Power Control of Three-port Dual Active Bridge DC-DC Converter for DC Microgrid Systems (DC 마이크로 그리드를 위한 Three-port Dual Active Bridge DC-DC 컨버터의 독립 전력 제어)

  • Sim, Ju-Young;Lee, Jun-Young;Choi, Hyun-Jun;Kim, Hak-Sun;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.366-372
    • /
    • 2018
  • Three-port dual-active bridge (DAB) converter in a DC microgrid was studied due to its high power density and cost-effectiveness. The other advantages of DAB include galvanic isolation and bidirectional power conversion capability using simple control modulation. The three-port DAB converter consists of a three winding transformer and three bridges. The transformer has three phases, which means that the ports are coupled. Thus, the three-port DAB converter causes unwanted power flows when the load connected to each port changes. The basic operational principles of the three-port DAB converter are presented in this study. The decoupling control strategy of the independent port power transfer is presented with a mathematical power model to overcome the unexpected power flow problem. The validity of the proposed analysis and control strategy is verified with PSIM simulation and experiments using a 1-kW prototype power converter.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.