• Title/Summary/Keyword: Decomposition approach

Search Result 462, Processing Time 0.025 seconds

A Comparison of Distributed Optimal Power Flow Algorithm (최적조류계산 분산처리 기법의 비교)

  • Kim, Ho-Woong;Park, Marn-Guen;Kim, Bal-Ho;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1046-1048
    • /
    • 1999
  • This Paper compares two mathematical decomposition coordination methods to implementing the distributed optimal Power flow(OPF) using the regional decomposition: the Auxiliary Problem Principle(APP) and the Alternating Direction Method(ADM), a variant of the conventional Augmented Lagrangian approach. A case study was performed with IEEE 50-bus system.

  • PDF

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가 장치 제어를 위한 중복 분산형 견실 고유구조지정 제어기 설계)

  • 정용하;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.217-217
    • /
    • 2000
  • A decentralized robust EA(eigensoucture assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, a robust eigenstructure assignment controller can be obtained by using optimization approach. The performance of the decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

New Upper Bounds for the CALE: A Singular Value Decomposition Approach

  • Savov, Svetoslav G.;Popchev, Ivan P.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.288-294
    • /
    • 2008
  • Motivated by the fact that upper solution bounds for the continuous Lyapunov equation are valid under some very restrictive conditions, an attempt is made to extend the set of Hurwitz matrices for which such bounds are applicable. It is shown that the matrix set for which solution bounds are available is only a subset of another stable matrices set. This helps to loosen the validity restriction. The new bounds are illustrated by examples.

A Study on Filling Holes of Large Polygon Model using Implicit Surface Scheme and Domain Decomposition Method (음함수 곡면기법과 영역 분할법을 이용한 대형 폴리곤 모델의 홀 메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.174-184
    • /
    • 2006
  • In order to fill the holes with complex shapes in the large polygon model, a new approach which is based on the implicit surface interpolation method combined with domain decomposition method is presented. In the present study, a surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In the method an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$ The generated surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In this paper the well-known domain decomposition method is used in order to treat the large polygon model. The global domain of interest is divided into smaller domains where the problem can be solved locally. LU decomposition method is used to solve a set of small local problems and their local solutions are combined together using the weighting coefficients to obtain a global solution. In order to show the validity of the present study, various hole fillings are carried out fur the large and complex polygon model of arbitrary topology.

Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed (유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조)

  • Lee, Seung-Chul;Lee, Kang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

Thermal Decompostion of Methane Using Catalyst in a Fluidized Bed Reactor (유동층반응기에서 촉매를 이용한 메탄 열분해)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.487-492
    • /
    • 2008
  • In this paper, Thermocatalytic decomposition of methane in a fluidized bed reactor (FBR) was studied. The technical approach is based on a single-step decomposition of methane over carbon catalyst in air/water vapor free environment. The factors affecting methane decompostion catalyst activity in methane decomposition reactions were examined. The fluidization phenomena in a gas-fluidized bed of catalyst was determined by the analysis of pressure fluctuation properties, and the results were confirmed with characteristics of methane decomposition. The effect of parameters on the H2 yield was examined for methane decompostion. The decompstion rate was affected by the fluidization quality such as mobility, U-Umf, carbon attrition, elutriation and effectiveness density of fluidization gas.

Compound Noun Decomposition by using Syllable-based Embedding and Deep Learning (음절 단위 임베딩과 딥러닝 기법을 이용한 복합명사 분해)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.74-79
    • /
    • 2019
  • Traditional compound noun decomposition algorithms often face challenges of decomposing compound nouns into separated nouns when unregistered unit noun is included. It is very difficult for those traditional approach to handle such issues because it is impossible to register all existing unit nouns into the dictionary such as proper nouns, coined words, and foreign words in advance. In this paper, in order to solve this problem, compound noun decomposition problem is defined as tag sequence labeling problem and compound noun decomposition method to use syllable unit embedding and deep learning technique is proposed. To recognize unregistered unit nouns without constructing unit noun dictionary, compound nouns are decomposed into unit nouns by using LSTM and linear-chain CRF expressing each syllable that constitutes a compound noun in the continuous vector space.

Stability of Interval Time-delayed Linear Systems using a Switched System Approach (전환 시스템 접근법을 이용한 구간 시간지연 선형 시스템의 안정성)

  • Kim, Joo-Kyeong;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • This paper considers the stability of linear systems having an interval time-varying delay using a switched system approach. The time-delay system is converted to the switched system equivalently, and then a stability criterion in the form of linear matrix inequality(LMI) is derived by using a parameter dependent Lyapunov-Krosovskii function(PD-LKF). In constructing a PD-LKF, the decomposition is employed for delay free intervals, and the reduction of conservatism is shown analytically as the number of decomposition increases. Finally, two well-known numerical examples are given to show the reduction of conservatism compared to the recent results.

A two-level parallel algorithm for material nonlinearity problems

  • Lee, Jeeho;Kim, Min Seok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.405-416
    • /
    • 2011
  • An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.

An Application of Divisia Decomposition Analysis to the Measurement of Thermal Efficiency Improvement of Power Generation (화력발전소 효율개선 측정에 대한 디비지아분해기법의 적용)

  • Choi, Ki-Hong
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.811-827
    • /
    • 2000
  • Since improved thermal efficiency reduces capacity requirements and energy costs, electricity producers often treat thermal efficiency as a measure of management or economic performance. The conventional measure of the thermal efficiency of a fossil-fuel generation system is the ratio of total electricity generation to the simple sum of energy inputs. As a refined approach, we present a novel thermal efficiency measure using the concept of the Divisia index number. Application of this approach to the Korean power sector shows improvement of thermal efficiency of 1.1% per year during 1970-1998. This is higher than the 0.9% improvement per year given by the conventional method. The difference is attributable to the effect of fuel substitution. In the Divisia decomposition context, we also show the limitations of the popular $T{\ddot{o}}rnqvist$ index formula and the superiority of the Sato-Vartia formula.

  • PDF