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New Upper Bounds for the CALE:
A Singular Value Decomposition Approach

Svetoslav G. Savov and Ivan P. Popchev

Abstract: Motivated by the fact that upper solution bounds for the continuous Lyapunov
equation are valid under some very restrictive conditions, an attempt is made to extend the set of
Hurwitz matrices for which such bounds are applicable. It is shown that the matrix set for which
solution bounds are available is only a subset of another stable matrices set. This helps to loosen
the validity restriction. The new bounds are illustrated by examples.
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1. INTRODUCTION

The continuous algebraic Lyapunov equation
(CALE) has been widely used in engineering theory.
Although there are many numerical algorithms used to
obtain a solution, sometimes only its estimate is
needed. For instance, one can estimate a stability
margin for real polynomials using some of the
available bounds [6]. An estimate based approach to
study robust stability and performance analysis of
uncertain stochastic systems was suggested in [1].
Lyapunov equations have been used in atmospheric
science applications [8], where a distinguishing
property of the coefficient matrix A4 is its large
dimension, which leads to impossibility for direct
solution. Therefore, for practical purposes it is
desirable to determine reasonable estimates.

The estimation problem for the CALE has attracted
considerable attention over the past three decades.
Excellent summaries on this topic were given in [4,5],
comprising various lower and upper bounds for the
largest eigenvalue, the trace, the determinant, the
solution itself, etc. In practical applications, especially
for stability analysis upper bounds are desired.

In most cases, the existing upper bounds are valid
under some, unfortunately, very restrictive

assumptions, e.g., A7 + A must be negative definite.
Since the stability of 4 does not guarantee this
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requirement, the respective estimates are useless for a
large set of stable matrices.

This fact motivated the authors of this paper to
investigate the conditions under which it is possible to
have valid upper bounds for the solution of the CALE
in cases when the existing bounds do not hold.

In other words, the results presented here extend the
set of stable matrices A, for which upper bounds for
the largest eigenvalue, the trace, and the solution
matrix, are valid. This paper is organized as follows.
The best known solution upper scalar bounds, when

AT +4 is a negative definite matrix and a recent
result (based on the wusage of similarity
transformation) guaranteeing upper bounds validity
for any Hurwitz matrix 4 are recalled in Section 2.
Section 3 contains the main results consisting in
extending the set of Hurwitz matrices for which upper
matrix, maximum eigenvalue and trace bounds for the
solution are valid (Theorem1 and Lemma 2). This is
achieved via the singular value decomposition of
matrix 4. Some computational aspects of the
suggested approach are discussed as well. The
applicability of the proposed bounds is illustrated by
several examples in Section 4, where the new bounds
are compared with the best known upper solution
estimates.

2. NOTATIONS AND PRELIMINARIES

In what follows, the given below notations will be
used. H is the set of Hurwitz (negative stable)
matrices, the symmetric part of matrix A is

A, =05(4" +4) and A>B,A>B means that

A—-B is a positive definite and positive semi-
definite matrix, respectively. The eigenvalues (when
real) of a mxm matrix A4 are denoted

(A2 Ay (A) 2.2 A,(A), H(4)=u(4) is the
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matrix measure of A. The maximum and minimum
singular values of matrix 4 are &;(4) and o,(4),

respectively. The maximum real part of the
eigenvalues of matrix 4 is x(A4) and / is the identity

matrix.
Consider the CALE
ATP+PA+0=0,4€eH,0>0, (1)

with respect to the unknown (positive definite) matrix
P. If u(A4) <0, the best known upper scalar solution

bounds are:
APl = 2(-047) 19, @
w(P) sty =2 DIA@AAN Bl O
1

Let T be a nonsingular matrix, denote A =74 7!
and define the set H™ ={4:u4[A4]<0}. Equation (1)
can be written in a modified form as:

A"P+PA+0=0,
P=1"pPT, 4)
o=r1"or7".

For any given matrix AeH, 4¢H™, there exists

matrix 7, such that 4 eH™. This well known fact is
used in [1] to apply bounds (2) and (3) for P in (4)
and then to get estimates for P in (1).

It is also possible to obtain a matrix bound.
Consider the modified equation in (4). Let for some
T, AeH’, e, A, <0.
Consider the positive scalar r defined as follows:

nonsingular matrix
1 _
n=_ A0 T
= A-0UATTTT + TTTA)
=0T @ TATTT + AT O
1, o~ o~ . 1 VS
=S ALOA) = Al 4) 2047
. RS A VI A .
Since 2771 > (—4;) 72Q(—4,) 7? and taking into
account (4), one gets the following matrix inequality
022nd, +Q=n(AT + )+ Q- ATP-P4-0
= AT (nI - Py+(nI - P)A.

Matrix A is Hurwitz and in accordance with
Lyapunov’s stability theory 7/ —P must be a

positive semi-definite matrix, which yields the upper
matrix bound

PsUTTT,rF%zl COITTTAY, T, ®)

and then scalar bounds for 4;(P) and tr(P) are easily

obtained.

The estimation problem for P has three important
aspects: (i) restrictions on matrix 4, (ii) computational
burden, and (iii) tightness of the bounds. Bounds,
based on Equation (4) eliminate problem (i), but
require the determination of matrix 7. The selection of
how to obtain the tightest bound is an open and

difficult question.
Matrix T is obtained by some additional
computational procedure and in this sense

P=T1TT, u(PA)<0, is said to be an external
Lyapunov matrix (ELM) for 4. An internal Lyapunov
matrix (ILM) is a matrix which can be defined
entirely in terms of 4. E.g, if 4eH™, then
P=4"4 isanILM for 4.

This paper is an attempt to overcome to a certain

extent the above mentioned difficulties concerning
bounds based on ELM. This is closely related with the

definition of an extension H of the conservative set
H™ in the sense that, if 4¢H™, but de I:I, there

exists ILM for A. This will help to avoid the
computation of an ELM which, as the order of 4
increases, may cause difficulties comparable with the
solution of the CALE itself and thus make the
respective bounds practically inapplicable.

3. MAIN RESULTS

Using the singular value decomposition (s.v.d.) of
the coefficient matrix in (1), i.e., A=UXZ vT, vuT
=y¥T=] and T is a positive diagonal matrix
containing the singular values of 4, it is always

possible to present it as a product of two matrices as
follows

A=FR=PF,F=UVT B} =47 4,P} = 44"

The s.v.d. of the transformed matrix A results in the
following respective representations:

A=TAT™' =UEVT = FR = BF,
o ST D2 “T% p2 T (6)
F=0vT,B2=4"4,p*=44",

with U0 =VPT =Jand £ is a positive diagonal
matrix. Define the matrix set

Izls{;l:ﬁeH}.
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Theorem 1: Denote §=T" BT. For any matrix
AeH and nonsingular 7, one has
@ AT TA) S 12 F],
(® H cHh,
(c) AeH o u(S4)<O0.
Proof: Having in mind (6), one gets

. __1 P VN |
RPN - EPRR - x,

Assertion (a) is proved applying the well known
inequality u(Y) 2 x(Y) valid for any matrix ¥ {2] to X,
which results in

1 1
w0 = AT T (T, T )
VA
— ALY, S| = W B R
>k (F),
since the eigenvalues of F are preserved under the
nonsingular transformation. Assertion (b) follows
immediately, i.e.,
AdeH o p[A]<0< w(TTTA) <0
o uX)<0=>FeH=4eH.

Finally, F is unitary by definition and hence
normal matrix, or

AeHe 0> k(F)= u(F)= w(AB™") & u(S4) <0,

which proves assertion (c).

Corollary 1: For any T, such that P=T"T s an
ELM for 4, S =TT BT is also an ELM for A.

Proof: It follows from assertions (b) and (c) in
Theorem 1. Let 77T be an ELM for 4 ie.,

u(TTTA) <0 w(A)<0 deH
= deH o u(S4)<0.

Comments: The approach suggested in [1] for
getting upper bounds for the solution P in (1) is
always theoretically applicable since the symmetric
part of the transformed matrix A is negative definite.
Corollary 1 illustrates the important fact that the s.v.d.
approach does not introduce any conservatism
concerning restrictions on the coefficient matrix for
bounds validity. If T TT is an ELM for A, then the
upper matrix bound in (5) becomes

P<nS, n=2A{-0lSA,T}

Since the main purpose isto get ILM, let T=1, i.e.,

A=4, F=F, S=RB=R. Then, the assertions of
Theorem 1 become:
Corollary 2: For any matrix 4€H one has

@ A(4BF )= K(F),
(b) AcH = 4eh,
(¢) AcHe u(BA)<0 o u(P'4)<0.
In other words, Ae |:|, if and only if, B and
Pz_l are ILMs for 4.
Denote S, =(RA), and S, = (55 4),.

Corollary 3: Let 4 <H. The solution P in (1) has
the following upper matrix bounds

1 _
P<uR, m=-A0S"),
2
: (7
P<uP5, #225/11(‘@5'2_1)-

Proof: It follows from Corollary 2, assertion (c)
and the matrix bound (5) applied for T7T =h,
7=yt and 7T = P{l,r] = u,, respectively.

Lemma 1: If 4eH, the maximum eigenvalue

and the trace of P in (1) have the following upper
bounds:

APy <l =min[g401(4), sy, (A)], (8)
tr(P)<ty =min[t,,1,4,15],

o1 _

h=2 408 Ntr(pPy),

1= H(-08")tr (A7), ©)

" 1 ,_ _ _
h=-24 WS B (R,

" 1 _
=== A (S, P 0(QPy).

Proof: Bounds / and t;,i =1,2, are obtained
from the respective matrix bounds (7) for P.
Having in mind the s.v.d. of A=USVT =FR =

BF, F=U yT , the CALE (1) can be rewritten as
Q=-RFTP-PFR = QR '=-RF PR - PF,
Q=-F"P,P—~PP,F = QP, =—F B,PP,—- PP, FP,.

Application of the tr operator to both sides of the
above equalities results in

tr (OB )= =2 tr (PF)

S (P%FSP% Y= 2u(F)tr (P),
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tr (OP,) = -2 tr (PRFP,)

1 1
=2t (PAPzFSPZP/Z )= —-2u(P,FP) tr (P).

Since Fg = PI_ISIP{I =S5, <0, bounds tf’z are
proved.

The upper trace bound ti‘ was proposed in [7].

The requirement Ae H is less restrictive in
comparison with the assumption that 4eH™, due to

the fact that H™ <H. Therefore, bounds (7), (8),
and (9) presented here are less conservative with
respect to the validity restrictions imposed on matrix
A by the existing estimation approaches

Comments: The derived bounds (7), (8), and (9)
are based on the s.v.d. of the coefficient matrix 4 and
in this sense they differ from all available bounds.
Nevertheless, the only specific procedure consists in
getting 4 in the form A4 =UX ¥, The computational
complexity introduced by the s.v.d. is completely
comparable with that required by the existing
approaches, all the more if 4 is a real matrix, then U
and V are also real [2]. Once the decomposition is
done, one can easily compute the matrices involved in
the respective bounds as follows:

p=v=yT, gl=ys W g2=ys 7,
p=UsUT B =us U PP =44 F=UV,
S, =Ry, =v=vTwvT +vuTysyT

VsV TEysyT,s, =(5'4), = F,.

Matrix F is a normal one and hence it is unitarily

similar to a diagonal matrix A ie., F= wAwT. If
A is Hurwitz, the proposed bounds are all valid. Then,
the inverses of F,, S and S, are obtained by
inversing diagonal matrices, i.e.,

REI
F,=2WAg W', F! :EWARLWT,

s

(N _ ol el e
s =VE WiwagwTvev™!, sst =k,

where Ag, denotes a diagonal matrix containing the

real parts of the eigenvalues of F, while (2) and (5)
require the computation of a possibly ill-conditioned
general matrix. Since F is a normal matrix, the
computation of W and A should not be a problem.
In any case, this computation is easier than the
computation of the eigenvalues of 4 (required by
necessity in order to guarantee positive definite
solution P), which must be put in the form

A=CTTC, with C (unitary) and T (triangular) being
complex matrices in the general case. Note also, that

computation of the spectrum of 4 is not required at all
if the s.v.d. is performed due to the following reasons.
Matrix F must be Hurwitz in order to get valid bounds.
If F is Hurwitz, this leads to

A=FP = PRA=RFPR = A' B +FRA=RF,R <0,

which is possible only if A is Hurwitz. Besides the
fact that the approach proposed in [1] requires
solution of a linear matrix inequality (LMI) and
therefore the computational burden may be
comparable with the one needed for the solution of the
CALE, it demonstrates one essential drawback. It is
not a priori known whether the ELM 7T in (5) will
provide satisfactory bound and it is quite natural to
expect that one should solve a series of LMIs.

So far, the existing upper bounds are expressed
entirely in terms of the eigenvalues of the symmetric
part of the coefficient matrix. The proposed bounds
also provide some new theoretical insight concerning
in general the estimation problem for the CALE. It
becomes clear that the singular values of 4 and its
unitary part F' play an important role in estimating the
solution P.

A natural question, concerning possibilities for
further extension of the set of stable matrices for
which ILM exist, arises. The next Lemma provides an
answer.

Lemma 2: Denote

!
4 =R AR, R :Ri(AiTAi)ARi’ iel,,
where I, is the set of all positive integers. Let
Ry =1. Definethe sets H; ={4:4; eH}iel,.
Forany i€/, onehas
H cH,cH, .

Proof: For i=1,R =1, 4 = A,H =H,orH cH,
in accordance with Corollary 2. Let for some
iel ,i#zl, onehas AeH,, ie. R,-AR,T1 eH. Due
to Corollary 2, assertion (c), this is equivalent to

1 1
(AT 42 4, M- & Ri(4T 4)2R 4
= Rl%—lA GH_ = Ai+l GH_.

But, H'g}:l:>A,-+1e|:|:>AeHl~+1:>Hl-<;Hi+l.
Corollary 4:

(a) deH; < u(RA4)<0,

(b)If AeH, for some i=i el,, then AeH;

and RJZ- is an ILM for 4 for all j>i*,je]+.

This result shows that the set of Hurwitz matrices
for which there exist valid upper bounds for the
solution of the CALE can be further extended.
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4. EXAMPLES

The applicability of the proposed bounds for P is
illustrated by several numerical examples. The
obtained upper scalar bounds (8) and (9), are
compared with the best known ones (2) and (3), when
these are valid.

Example 1: Consider the unitary matrices

o3 sl
V2i-1 -1 1+t l—a 1]

where a > 0 and the positive diagonal matrix %=
diag(o,1). It is desired to investigate the influence of

the parameters ¢ and o on the possibility to get
bounds for P in (1), if the coefficient matrix is

-1
A=UzVT. Denote t=l:\/2(l+a2):' . Then,

{—o‘+a 1+0'a}
A=t .
—-oc—a -l+ca

For any a <1 and any o >0, AeH. The unitary
part of 4 is

—1+a l+a

~(1+a)

F=UVT=t[
~l+a

} = F, =i(-1+a)l,
or AeHo 4eH in this case. If 4 eH™, then
a < min(o, ! ), by necessity.

Consider the matrix bounds (7), with S} =¢#(—1+
AR, S, =t(-1+a)l,

2
ct+a® -ac+
R=vzyT =27 wemay
—ac+a da*o+1
-1 -1
Bl -us T =0s|% P e T
o '-1 o71+1

Case 1: Let a = 0.5 and o =2. Since u(A4)>0,

bounds (2) and (3) are not valid. Let Q = I in (1). The
exact solution P is

3 -1
P=025¢" [_1 3},&(13) 1.5 4 (P)=1"1.

Since Ae I:|, bounds (8) and (9) are valid. In this

1

case, 4 =p,=t"'. The matrix bound P ' =

_1
t“l(AAT ) 5 = P, which is evident from the fact that

AT v Pla=—u=p = p,

since P is unique for any given matrices 4 and Q.
Consider bounds (8) and (9). The maximum
eigenvalue upper bound is

L=minQr Y= = 4(P)
and the trace upper bound is
i =min(r 150711507150y = 1.5 = (P).

The proposed upper scalar bounds coincide with the
exact respective solution parameters in this case.
Case 2: Leta=0.5,0=1.5 and Q = I In this case

p(A) = 4(4,)=-0.125(5-10)r <0 and A,(4,)=
—0.125(5+~/10)r, or AeH  and bounds (2) and
(3) are valid. The exact solution P is

5 -1
_pn-l 5/ 41 _ 1
P=(6t) L J, w(P) =), a(py=r".
The upper bounds (2) and (3) are computed as

Iy =45-V10Y"7", 1 =34
The proposed bounds (8) and (9) are:

L =min(1.57 Y= = 4Py <y

1 =4 =u(P) <.

Example 2: Consider matrix

-1 0 1
A= 0 -1 yp|,
1 x a

which is stable for a <min[l,—(1+xy)] and 4eH”
for a<-1-0.25(x+y)>.
Let Qin (1) be chosen as Q = diag(3,2,1).

Case 1: Let a =-1, x = 1, and y = -2. In this case
#(A)>0, and bounds (2) and (3) are not valid, while

AeH and the proposed bounds (8) and (9) can be
used. The maximum eigenvalue and trace of P are
computed as 4 (P)=4.2826 and tr(P) = 5.95. The

scalar upper bounds (8) and (9) are

I, =min(28.1978,5.2086) = 5.2086,
f =7.4593.

Case 2: let g = -2, x = 1, and y = -2.
Since (A)<0= AeH = 4eH, bounds (2), (3),
(8), and (9) are valid. In this case A (P)=2.7345
and tr(P) = 4. The respective scalar bounds are:

lO = 4.2106, t() = 6633,
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l; = min(15.2162,2.8246) = 2.8246 <,
tl = 4.407 < fo.

Example 3: Consider matrix

-2 1 0 5
-3 2 20
A= .
0 -3 -5 0
-4 0 3 a

1
Let Q:(ATA)A.

Case 1: Let ¢ = -0.6. Then 4 el:i, but u(4)>0
and bounds (2) and (3) are not valid. The computed
maximum eigenvalue and trace of P in (1) and their
respective bounds (8) and (9) are

4 (P)=2.3154, tr(P)=4.9906,

[, =min(7.494,10.7412) = 7.494,

t, =8.6243.

Case 2: Let a=-2. In this case u(A4)<0 and

A4 (P)=1.4742, tr(P)=3.803,

Iy =1.9103, 1, =7.9844,

/y = min(1.8885,6.3628) = 1.8885 </,
f =4.9454 <1,

Define the percentage error in estimating the
maximum eigenvalue and trace of P, respectively, as:

A,i[%]z[(l,./ll(P)—1]><100, i=0,1.

Ati[%]=[(t,-/tr(P)—1]><lOO, i=0,1.

The results obtained from the above examples can
be summarized as follows:

Example 1:
Case 1: Ah =7, = 0; bounds (2) and (3) are not

valid.
Case 2:

Ay =0<A; =100.42%; A, =0 <A, =60%.
Example 2:
Case 1: A} =21.62%, A, =25.37%; bounds (2)

and (3) are not valid.
Case 2:

Ay =3.295% < Ay, =54%,
A, =10.175% < A, =65.8%.

Example 3:
Case 1: A,] =223.66%, A,] =72.8% ; bounds (2)

and (3) are not valid.

Case 2:
A,1 =28.1% < AZO =29.6%,
A,l =30% < A,O =110%.

The best known upper bounds (2) and (3) cannot be
used in half of the considered cases. In addition, the
proposed bounds (8) and (9) are much tighter then
bounds (2) and (3) in the cases when the last ones are
valid.

5. CONCLUSION

Extending the set of Hurwitz matrices for which
upper solution bounds for the CALE are valid is the
topic of this paper. The available bounds require that

AeH™ (set of matrices with negative definite
symmetric parts), which is a very restrictive condition.
Applying the s.v.d. approach, any nonsingular matrix
can be represented as a product of a unitary matrix F
and a positive definite matrix. It is proved in Theorem
1 that:

(i) H < H (set of matrices with stable unitary parts

F),
- 1 21
(i) AeH < B = (ATA)A and P! =(44") -
ILMs for 4.
This helps to achieve the proposed upper matrix

and scalar solution bounds that are proposed here
(Corollary 3 and Lemma 1). A further extension of the

set H is defined in Lemma 2.

The main contribution of this work consists in the
attempt made to overcome some well known
difficulties concerning solution bounds for the CALE,
such as hard wvalidity restrictions and additional
computational burden when the ELM approach to get
estimates is used. Several examples illustrate the
validity and superiority of the new bounds over the
best available ones.
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