• 제목/요약/키워드: Decomposition Products

Search Result 377, Processing Time 0.027 seconds

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Experimental Study on Air Decomposition By-Product Under Creepage Discharge Fault and Their Impact on Insulating Materials

  • Javed, Hassan;LI, Kang;Zhang, Guoqiang;Plesca, Adrian Traian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2392-2401
    • /
    • 2018
  • Creepage discharge faults in air on solid insulating material play a vital role in degradation and ageing of material which ultimately leads to breakdown of power equipment. And electric discharge decompose air in to its by-products such as Ozone and $NO_x$ gases. By analyzing air decomposition gases is a potential method for fault diagnostic in air. In this paper, experimental research has been conducted to study the effect of creepage discharge on rate of generation of air decomposition by-products using different insulating materials such as RTV, epoxy and fiberglass laminated sheet. Moreover XRF analysis has been done to analyze creepage discharge effect on these insulating materials. All experiments have been done in an open air test cell under constant temperature and pressure conditions. While analysis has been made for low and high humidity conditions. The results show that the overall concentration of air decomposition by-products under creepage discharge in low humidity is 4% higher than concentration measured in high humidity. Based on this study a mathematical relationship is also proposed for the rate of generation of air decomposition by-products under creepage discharge fault. This study leads to indirect way for diagnostic of creepage discharge propagation in air.

Studies on the Composition analysis of Oak Mushroom (Lentinula edodes) Cultural Waste (표고버섯 재배용 참나무 폐골목의 화학적 성분분석)

  • Lee, Min-Woo;Seo, Yung-Bum
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.222-228
    • /
    • 2008
  • The chemical composition and thermal, crystal characterization of oak mushroom waste were investigated in comparison with those normal oak wood for utilization of cellulose from oak mushroom waste. The oak mushroom waste contained a higher percentage of ash, and hot water extractives than oak wood. This results indicated that the materials inside the body are easily decomposed during the oak mushroom cultivation. The lower percentage of holocellulose and a-cellulose of oak mushroom waste caused by fungal decomposition too. Whereas, the thermal decomposition behavior and crystallinity of oak mushroom waste was similar to that of normal oak wood, which indicated that the cellulose characterization of oak mushroom waste is resistant to fungal decomposition. In additionally, a degree of polymerization of oak mushroom waste must be investigate for examination of cellulose crystalline characterization, especially.

  • PDF

Investigation on the products generated by the ozonation of Microcystis sp. (Microcystis sp.의 오존접촉특성 및 부산물 생성에 관한 연구)

  • Kim, Young-Ung;Son, Hee-Jong;Yu, Myung-Ho;Lee, Chun-Sik;Kim, Seong-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.479-490
    • /
    • 2000
  • This study investigated the removal characteristics, Microcystin decomposition and generation of by-products when aqueous Microcystis sp. is oxidized by ozone. The concentration of Microcystin (MC) in aqueous solution has been found by HPLC analysis to decrease continuously by ozonation after the initial, abrupt increase. The kinetic constant of the decomposition of MC-RR and -LR were 0.0596 and 0.0243, respectively. This means that removal efficiency of MC-RR by its oxidative decomposition is preferable compared with that of MC-LR. On the other hand, it has been found that the decomposition product, TOC, exhibits the continuous decrease in the concentration by further ozonation, while DOC and UV-254 increase temporarily until 10 minutes before the decrease. Furthermore, the GC/MSD analysis has revealed that the ozonation of Microcystis sp. for 100minutes affords five kinds of aldehydes, six kinds of alcohols, and trans-1, 2-dimethyl-cyclopropane.

  • PDF

A Study on the Thermal Decomposition Characteristics of Waste PVC Wire Added with CaO (CaO를 첨가한 폐PVC전선의 열적분해 특성에 관한 연구)

  • Shah, Malesh;Park, Ho;Kwon, Woo-Teck;Lee, Hae-Pyeong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.268-277
    • /
    • 2012
  • The thermal decomposition characteristic of waste PVC wires has been studied by using TGA and fixed-bed reactor. The experimental conditions of decomposition temperatures, air flow rates and weight ratio of CaO/PVC were considered in this work. To verify the effectiveness of CaO addition to remove HCl and toxic gases generated from thermal decomposition of PVC wire, the gaseous products obtained from the thermal decomposition of PVC were analyzed by GC/MS(Gas Chromatograph and Mass Spectrometry). To investigate the effect of CaO in thermal decomposition of PVC, liquid products were also analyzed by GC/MS. And the effect of decomposition temperature, air flow rate and CaO/ PVC weight ratio on the yield of liquid, gas and residue fraction have been also studied. From this work, it was found that the removal amount of HCl generated from thermal decomposition of PVC increased with increase of CaO addition.

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.

Response-Improved Electrochromic Display Device Based on Organic Materials (고응답성 유기계 전기변색성 소자의 제작과 특성)

  • 권태선
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.81.1-91
    • /
    • 1994
  • Irradiation of aromatic diazonium salts resulted in an effcient elimination of nitrogen, yielding substitution products. This paper was not only studies about photolysis of aromatic diazonium with double salts but also coexistence of ion and radical when they was photolysis. Photolysis of aromatic diazonium was depend on excite wave length therefore photolysis products out put different absorption intensity such other. We also confirmed coexistence of ion and radical when they was accomplished photolysis. In case of BD, there are ion decomposition process about 90 percentage, decreased ion decomposition process the other side radical`s it was becomeing increased according to excite of short-wave length.

  • PDF

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Can Index Decomposition Analysis Give a Clue in Understanding Industry's Greenhouse Gas Footprint? (산업의 온실가스 배출 행태 이해를 위한 지수분해분석 적합성 실증 연구)

  • Chung, Whan-Sam;Tohno, Susumu
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.55-84
    • /
    • 2015
  • Korea is one of the few OECD countries having no binding Greenhouse gas (GHG) emissions reduction obligations under the Kyoto Protocol. Korea is going to enforce a powerful greenhouse gas emissions control to the industry from 2015. Current GHG reduction policies do not take into account the trade-off between economic growth and GHG mitigation, this approach will not be sustainable. Sectoral approach, considering industry by industry may be more eco-friend approach. This study verified the validity of the analysis results counted from whole procedure of energy input-output analysis and decomposition analysis to sector 'Organic basic chemical products' and 'Cement and concrete products'. Empirical test was performed using changes in energy consumption, production, process improvements and new facilities. Although the results showed unstable fluctuations from Divisia index decomposition analysis, it was verified that the entire procedure can provide a clue in understanding of the industry's energy and GHG footprint.

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.