• Title/Summary/Keyword: Decode-and-Forward Protocol

Search Result 61, Processing Time 0.019 seconds

Optimal Relays for Cooperative ARQ Protocol Based on Threshold of Distance

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.215-223
    • /
    • 2008
  • Retransmission signals from relays to destination when the destination fails to decode received signal from the source in Automatic Repeat Request (ARQ) protocol make the destination receive signals more reliably. With using omni -direction antenna in the practical system, in communication range of both the source antenna and the destination antenna, there are some relays that can be used to transmit signal to the destination. However, using all relays to transmit signal consume power and bandwidth. In this paper, we propose a new protocol in which the best relays are chosen based on threshold of distance from the source to the relay and the relay to the destination when the relays use decode- and forward (DF) protocol. Simulation results prove the efficiency of the protocol when we compare using only the best relays with using all relays to transmit signal to the destination.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

Performance Analysis for Selection Decode-and-Forward Relay Networks with Differential Modulation over Rayleigh Fading Channels (레일리 페이딩 채널에서 차등 변조기법을 이용한 선택적 복호 후 재전송 중계 네트워크의 성능 분석)

  • Kong, Hyung-Yun;Bao, Vo Nguyen Quoc
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.1-9
    • /
    • 2010
  • This paper offers performance analysis of selection decode and forward (DF) networks with differential modulation/demodulation for an arbitrary number of relays in independent but not identically distributed Rayleigh fading channels. We have shown that the selection DF protocol with differential modulation can achieve full diversity in both independent identically distributed (i.i.d.) and independent but not identically distributed (i.n.d.) Rayleigh fading channels, and the performance loss due to using non-coherent detection is not substantial. Furthermore, we study the impact of combining techniques on the performance of the system by comparing a system that uses selection combining (SC) to one that uses maximum ratio combining (MRC). Simulations are performed and show that they match exactly with analytic ones in high SNR regime.

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

Security performance analysis of SIMO relay systems over Composite Fading Channels

  • Sun, Jiangfeng;Bie, Hongxia;Li, Xingwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2649-2669
    • /
    • 2020
  • In this paper, we analyze the secrecy performance of single-input multiple-output (SIMO) relay systems over κ-μ shadowed fading channels. Based on considering relay model employing decode-and-forward (DF) protocol, two security evaluation metrics, namely, secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) are studied, for which closed-form analytical expressions are derived. In addition, Monte Carlo results prove the validity of the theoretical derivation. The simulation results confirm that the factors that enhance the security include large ratio of (μD, μE), (mD, mE), (LD, LE) and small ratio of (kD, kE) under the high signal-to-noise ratio regime.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Performance Analysis of CDMA-OFDM System via Cooperative Communication in Wireless Fading Environment

  • Jeong Hwi-Jae;Kong Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.176-181
    • /
    • 2006
  • Signal distortion due to the path loss, shadow, and multi-path fading is very serious in radio channel. In this paper, we propose CDMA-OFDM cooperative communication system based on DFP(Decode and Forward Protocol) to overcome these phenomena using spread spectrum technique, orthogonal sub-carrier, and the space diversity. We simulated proposed system under Rayleigh flat fading channel environment. A variety of simulation results reveal the cooperation can provide performance gain of up to 12 dB over direct communications in ideal inter-user case at BER of $10^{-3}$. And we can also confirm variation of diversity effect as channel environment changes.

Performance Analysis of Wireless-powered Backscatter Communication with TSR-based Relay (TSR 릴레이를 활용한 무선 전력 Backscatter 통신 성능 분석)

  • Park, Si Woo;Park, Jae Hyun;Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1164-1170
    • /
    • 2020
  • In this paper, we consider the wireless-powered backscatter communication which consists of a power beacon, a source, a relay, and a destination. For the proposed wireless-powered backscatter communication, the source transmits its signals to both the relay and the destination via a backscattering channel and the relay which has a rechargeable battery performs an energy harvesting as well as an information forwarding based on the time switching relay (TSR) protocol. Based on the decode-and-forward (DF) relay transmission, we investigate performances of the proposed system in terms of outage probability and transmission rate in which the exact performance analysis of outage probability is given. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

Application of LLR on Cooperative Communications for Wireless Relay Networks (무선 중계 네트워크의 협력 통신 방법에 대한 LLR 적용 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Lee Dong-Un
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.601-606
    • /
    • 2006
  • Decode-and-forward cooperative communications protocol (DFP) allows single-antenna users in wireless medium to obtain the powerful benefits of multi-antenna systems without physical antenna arrays. For this protocol, so far the relays have used SNR to evaluate the reliability of the received signal before deciding whether to forward the decoded data so as to prevent their unsuccessful detection. However, SNR only characterizes the long-term statistic of Gaussian noise and thus leading to inaccurate assesment. Therefore, we propose using log-likelihood ratio (LLR) which accounts for the instantaneous noise in the received signal as an alternative to SNR. A variety of simulation results reveal the significant superiority of the SNR-based DFP to the SNR-based DFP regardless of threshold level and relay position under the flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

Performance Analysis of Decode-and-Forward Relaying with Partial Relay Selection for Multihop Transmission over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.433-441
    • /
    • 2010
  • Multihop transmission is a promising technique that helps in achieving broader coverage (excellent network connectivity) and preventing the impairment of wireless channels. This paper proposes a cluster-based multihop wireless network that makes use of the advantages of multihop relaying, i.e., path loss gain, and partial relay selection in each hop, i.e., spatial diversity. In this partial relay selection, the node with the maximum instantaneous channel gain will serve as the sender for the next hop. With the proposed protocol, the transmit power and spectral efficiency can be improved over those in the case of direct transmission and conventional multihop transmission. Moreover, at a high signal-to-noise ratio (SNR), the performance of the system with at least two nodes in each cluster is dependent only on the last hop and not on any of the intermediate hops. For a practically feasible decode-and-forward relay strategy, a compact expression for the probability density function of the end-to-end SNR at the destination is derived. This expression is then used to derive closed-form expressions for the outage probability, average symbol error rate, and average bit error rate for M-ary square quadrature amplitude modulation as well as to determine the spectral efficiency of the system. In addition, the probability of SNR gain over direct transmission is investigated for different environments. The mathematical analysis is verified by various simulation results for demonstrating the accuracy of the theoretical approach.