• Title/Summary/Keyword: Decision feedback equalization

Search Result 76, Processing Time 0.024 seconds

Performance of Equalization in Narrowband Multiple Transmission Communication Systems (협대역 다중전송시스템에서의 등화 성능)

  • Yoo, Sinwoo;Ji, Younggun;Cho, Hyung-Weon;Han, Chulhee;Seo, Myunghwan;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • In this paper, a multiple transmission communication system employing ranging based transmission timing adjustment capability is proposed. In addition, a decision feedback equalizer with the use of combinations of soft decision and hard decision adequate to the proposed multiple transmission communication system is also proposed. The proposed ranging based transmission timing adjustment capability makes the received signals from the multiple transmission points centered on the different symbol timing boundaries. The decision making method for the inputs to the proposed decision feedback equalizer is adaptively selected between soft decision and hard decision as per channel conditions like SNR. The performance of the proposed method had been analyzed through the simulation under the fading channel environments and compared with the previous methods. The simulation results showed performance improvement of the proposed method over the existing ones without noticeable increments in complexities.

Multi-Constant Modulus Algorithm for Blind Decision Feedback Equalizer (블라인드 결정 궤환 등화기를 위한 다중 계수 알고리즘)

  • Kim, Jung-Su;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • A new multi constant modulus algorithm (MCMA) for a blind decision feedback equalizer is proposed. In order to avoid the error propagation problem in the conventional DFE structure, Feed-Back Filter coefficients are updated only after Feed-Forward Filter coefficients are sufficiently converged to the steady state. Therefore, it has the problem of slow convergence speed characteristics. To overcome this drawback, the proposed MCMA algorithm uses not only new cost function considering the minimum distance between the received signal and the representative value containing the statistical characteristics of the transmitted signal, but also adaptive step-size according to the equalizer outputs to fast convergence speed of FBF. Simulations were carried out under the certified communication channel environment to evaluate a performance of the proposed equalizer. The simulation results show that the proposed equalizer has an improved convergence and SER performance compared with previous methods. The proposed techniques offer the possibility of practical equalization for cable modem and terrestrial HDTV broadcast (using 8-VSB or 64-QAM) applications.

Current-Integrating DFE with Sub-UI ISI Cancellation for Multi-Drop Channels

  • Park, Hwan-Wook;Lim, Hyun-Wook;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.112-117
    • /
    • 2016
  • This paper presents a half-rate current-integrating DFE receiver with sub-unit interval (sub-UI) inter-symbol interference (ISI) cancellation. By having a single additional DFE tap in each data path, the proposed DFE receiver can minimize BER degradation due to input pattern dependency and feedback tap latency problems in conventional current-integrating DFE receivers. The proposed DFE receiver was designed and fabricated in a 45 nm CMOS process, whose measurement results indicated that the BER bathtub width is increased from 0.235 UI to 0.315 UI (34% improvement) at $10^{-12}$ BER level.

Adaptive Equalization for Reduction of Nonlinearity in High-Density Recording Channels (디지털 고밀도 기록 장치의 비선형성 감소를 위한 비선형 적응 등화기 설계)

  • 손주신;전원기;조용수;임용훈;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2397-2408
    • /
    • 1994
  • In this paper, a structure for a nonlinear adaptive equalizer is discussed to reduce nonlinearity in digital high-density recording systems. We propose a nonlinear adaptive decision feedback equalizer which can reduce the nonlinear intersymbol interference increasing with high-density recording systems, and compare its performance with the RAM-DFE which is designed to remove nonlinear intersymbol interference existing in postcursor part. By observing the output SNR of each equalizer applied to recording channels with three different densities. we confirm that the nonlinear adaptive decision feedback equalizer performs the best in the general case where nonlinear intersymbol interference exists in both precursor and postcursor parts.

  • PDF

Training Algorithm of Recurrent Neural Network Using a Sigma Point for Equalization of Channels (시그마 포인트를 이용한 채널 등화용 순환신경망 훈련 알고리즘)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.826-832
    • /
    • 2007
  • A recurrent neural network has been frequently used in equalizing the channel for fast communication systems. The existing techniques, however, have mainly dealt with time-invariant chamois. The modern environments of communication systems such as mobile ones have the time-varying feature due to fading. In this paper, powerful decision feedback - recurrent neural network is used as channel equalizer for nonlinear and time-varying system, and two kinds of algorithms, such as extended Kalman filter (EKF) and sigma-point Kalman filter (SPKF), are proposed; EKF is for fast convergence and good tracing function, and SPKF for overcoming the problems which can be developed during the process of first linearization for nonlinear system EKF.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Optimizing of BCJR Equalization with BCJR Decoder in the Underwater Communication (수중통신에서 최적의 BCJR 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2094-2100
    • /
    • 2014
  • The performance of underwater acoustic communication system is sensitive to the inter-symbol interference due to delay spread develop of multipath signal propagation. Thus, it is necessary technique of equalizer and channel code to eliminate inter-symbol interference. In this paper, underwater acoustic communication system were analyzed by experiment using these techniques on the Kyeong-chun lake, Munkyeong City. Based on the results of experiment, we confirmed that the performance of the proposed iterative BCJR equalization method is improved by increasing the number of iterations.

A Full Rate Dual Relay Cooperative Approach for Wireless Systems

  • Hassan, Syed Ali;Li, Geoffrey Ye;Wang, Peter Shu Shaw;Green, Marilynn Wylie
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.442-448
    • /
    • 2010
  • Cooperative relaying methods have attracted a lot of interest in the past few years. A conventional cooperative relaying scheme has a source, a destination, and a single relay. This cooperative scheme can support one symbol transmission per time slot, and is caned full rate transmission. However, existing fun rate cooperative relay approaches provide asymmetrical gain for different transmitted symbols. In this paper, we propose a cooperative relaying scheme that is assisted with dual relays and provides full transmission rate with the same macro-diversity to each symbol. We also address equalization for the dual relay transmission system in addition to addressing the issues concerning the improvement of system performance in terms of optimal power allocations.

Finite Alphabet Control and Estimation

  • Goodwin, Graham C.;Quevedo, Daniel E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.412-430
    • /
    • 2003
  • In many practical problems in signal processing and control, the signal values are often restricted to belong to a finite number of levels. These questions are generally referred to as "finite alphabet" problems. There are many applications of this class of problems including: on-off control, optimal audio quantization, design of finite impulse response filters having quantized coefficients, equalization of digital communication channels subject to intersymbol interference, and control over networked communication channels. This paper will explain how this diverse class of problems can be formulated as optimization problems having finite alphabet constraints. Methods for solving these problems will be described and it will be shown that a semi-closed form solution exists. Special cases of the result include well known practical algorithms such as optimal noise shaping quantizers in audio signal processing and decision feedback equalizers in digital communication. Associated stability questions will also be addressed and several real world applications will be presented.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.