Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.41-50
/
2020
Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.
We have implemented an inductive learning system that learns PROSPECTOR-rule-style classification rules from sets of examples. In our a approach, a genetic algorithm is used in which a population consists of rule-sets and rule-sets generate offspring through the exchange of rules relying on genetic operators such as crossover, mutation, and inversion operators. In this paper, we describe our learning environment centering on the syntactic structure and meaning of classification rules, the structure of a population, and the implementation of genetic operators. We also present a method to evaluate the performance of rules and a heuristic approach to generate rules, which are developed to implement mutation operators more efficiently. Moreover, a method to construct a classification system using multiple learned rule-sets to enhance the performance of a classification system is also explained. The performance of our learning system is compared with other learning algorithms, such as neural networks and decision tree algorithms, using various data sets.
Journal of the Institute of Convergence Signal Processing
/
v.15
no.2
/
pp.24-29
/
2014
Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.
Background: Rehabilitations in subacute phase are different from acute treatments regarding the characteristics and required resource consumption of the treatments. Lack of accuracy and validity of the Korean Diagnosis Related Group and Korean Out-Patient Group for the acute patients as the case-mix and payment tool for rehabilitation inpatients have been problematic issues. The objective of the study was to develop the Korean Rehabilitation Patient Group (KRPG) reflecting the characteristics of rehabilitation inpatients. Methods: As a retrospective medical record survey regarding rehabilitation inpatients, 4,207 episodes were collected through 42 hospitals. Considering the opinions of clinical experts and the decision-tree analysis, the variables for the KRPG system demonstrating the characteristics of rehabilitation inpatients were derived, and the splitting standards of the relevant variables were also set. Using the derived variables, we have drawn the rehabilitation inpatient classification model reflecting the clinical situation of Korea. The performance evaluation was conducted on the KRPG system. Results: The KRPG was targeted at the inpatients with brain or spinal cord injury. The etiologic disease, functional status (cognitive function, activity of daily living, muscle strength, spasticity, level and grade of spinal cord injury), and the patient's age were the variables in the rehabilitation patients. The algorithm of KRPG system after applying the derived variables and total 204 rehabilitation patient groups were developed. The KRPG explained 11.8% of variance in charge for rehabilitation inpatients. It also explained 13.8% of variance in length of stay for them. Conclusion: The KRPG version 1.0 reflecting the clinical characteristics of rehabilitation inpatients was classified as 204 groups.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.9
/
pp.811-819
/
2014
Activity recognition is a key component in identifying the context of a user for providing services based on the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, as observed in many previous investigations, we are proposing the use of smartphone with its built-in multimodal sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. The evaluation indicates that the IBK classifier using window size of 2s with 50% overlapping yields the highest accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain and frequency-domain features were extracted from raw sensor data of the smartphone.
In this paper, we carried out the word, 4 continuous digits. continuous, and task-independent word recognition experiments to verify the effectiveness of the re-defined phoneme-likely units (PLUs) for the phonetic decision tree based HM-Net (Hidden Markov Network) context-dependent (CD) acoustic modeling in Korean appropriately. In case of the 48 PLUs, the phonemes /ㅂ/, /ㄷ/, /ㄱ/ are separated by initial sound, medial vowel, final consonant, and the consonants /ㄹ/, /ㅈ/, /ㅎ/ are also separated by initial sound, final consonant according to the position of syllable, word, and sentence, respectively. In this paper. therefore, we re-define the 39 PLUs by unifying the one phoneme in the separated initial sound, medial vowel, and final consonant of the 48 PLUs to construct the CD acoustic models effectively. Through the experimental results using the re-defined 39 PLUs, in word recognition experiments with the context-independent (CI) acoustic models, the 48 PLUs has an average of 7.06%, higher recognition accuracy than the 39 PLUs used. But in the speaker-independent word recognition experiments with the CD acoustic models, the 39 PLUs has an average of 0.61% better recognition accuracy than the 48 PLUs used. In the 4 continuous digits recognition experiments with the liaison phenomena. the 39 PLUs has also an average of 6.55% higher recognition accuracy. And then, in continuous speech recognition experiments, the 39 PLUs has an average of 15.08% better recognition accuracy than the 48 PLUs used too. Finally, though the 48, 39 PLUs have the lower recognition accuracy, the 39 PLUs has an average of 1.17% higher recognition characteristic than the 48 PLUs used in the task-independent word recognition experiments according to the unknown contextual factor. Through the above experiments, we verified the effectiveness of the re-defined 39 PLUs compared to the 48PLUs to construct the CD acoustic models in this paper.
Journal of the Korea Institute of Information Security & Cryptology
/
v.24
no.5
/
pp.839-850
/
2014
As the social and financial damages caused by APT attack such as 3.20 cyber terror are increased, the technical solution against APT attack is required. It is, however, difficult to protect APT attack with existing security equipments because the attack use a zero-day malware persistingly. In this paper, we propose a host based anomaly detection method to overcome the limitation of the conventional signature-based intrusion detection system. First, we defined 39 features to identify between normal and abnormal behavior, and then collected 8.7 million feature data set that are occurred during running both malware and normal executable file. Further, each process is represented as 83-dimensional vector that profiles the frequency of appearance of features. the vector also includes the frequency of features generated in the child processes of each process. Therefore, it is possible to represent the whole behavior information of the process while the process is running. In the experimental results which is applying C4.5 decision tree algorithm, we have confirmed 2.0% and 5.8% for the false positive and the false negative, respectively.
Park, Jeong Been;Han, Kyung Soo;Kim, Tae Gune;Im, Eul Gyu
Journal of KIISE
/
v.42
no.5
/
pp.558-565
/
2015
Recently, the number of new malware and malware variants has dramatically increased. As a result, the time for analyzing malware and the efforts of malware analyzers have also increased. Therefore, malware classification helps malware analyzers decrease the overhead of malware analysis, and the classification is useful in studying the malware's genealogy. In this paper, we proposed a set of key opcode to classify the malware. In our experiments, we selected the top 10-opcode as key opcode, and the key opcode decreased the training time of a Supervised learning algorithm by 91% with preserving classification accuracy.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.4
/
pp.605-616
/
2021
While malwares must be accurately identifiable from arbitrary programs, existing studies using classification techniques have limitations that they can only be applied to limited samples. In this work, we propose a method to utilize API call frequency to detect and classify malware families from arbitrary programs. Our proposed method defines a rule that checks whether the call frequency of a particular API exceeds the threshold, and identifies a specific family by utilizing the rate information on the corresponding rules. In this paper, decision tree algorithm is applied to define the optimal threshold that can accurately identify a particular family from the training set. The performance measurements using 4,443 samples showed 85.1% precision and 91.3% recall rate for family detection, 97.7% precision and 98.1% reproduction rate for classification, which confirms that our method works to distinguish malware families effectively.
Park, Seong-min;Park, Jeong-soo;Lee, Yoon-kyu;Chae, Woo-Joon;Shin, Moon-sun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.316-318
/
2019
Recently, healthy life has become an issue in an aging society, and the number of people who have been interested in continuous health care for better life is increasing. In this paper, we implemented a personalized recommendation systm to provide convenient healthcare management for user. The PHR (Personal Health Record) of user could be stored in the server along with health related information such as lifestyle, disease, and physical condition. The users could be classified into similar clusters according to the PHR profile in order to provide healthcare contents to the users who had similar PHR profile. K-Means clustering was applied to generate clusters based on PHR profile and ACDT(Ant Colony Decision Tree) algorithm was used to provide personalised recommendation of health information stored in knowledge base. The app system developed in this paper is useful for users to perform healthcare themselves by providing information on serious diseases and lifestyle habits to be improved according to the clusters classified by PHR profile.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.