원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수성을 확인하였다.
데이터 마이닝은 특정분야에서만 관심을 갖는 분야가 아니라 현재 우리주변 여러 분야에서 많이 사용되고 응용되고 있다. 즉, 수많은 데이터 가운데 숨겨져 있는 유용한 상관관계를 발견하여, 미래에 실행 가능한 정보를 예측하여 추출해 내고 추후에 의사 결정에 이용하는 과정을 말한다. 하지만, 일부 데이터 집합에서는 매우 많은 결측치를 포함하는 변수들이 존재한다. 다시 말해서 다수의 레코드에서 측정치가 존재하지 않는 데이터 집합이 존재한다. 그래서 본 논문에서는 Cholesterol 값을 예측하기 위한 결측치 처리에 따른 모델트리 알고리즘을 적용하고, 실험을 통해서 각 처리방식에 대한 성능을 분석한다. 또는 이 결과를 통하여 결측치 대체방법에 대한 효율적인 적용사례를 제시한다.
본 연구는 뇌졸중 환자의 효율적인 재원일수 관리를 위해 행정자료를 이용하여 우리나라 의료기관을 이용한 뇌졸중 입원환자의 중증도 보정 적정 재원일수 예측 모형을 개발하고 이를 의료기관에서 활용할 수 있는 방안을 제시하고자 하였다. 이를 위해 2004-2009년 퇴원손상심층조사 자료 중 뇌졸중 입원환자 23,134명을 대상으로 데이터마이닝 기법을 이용하여 뇌졸중 입원환자의 적정 재원일수 예측모형을 개발하였다. 의사결정나무 모형에 따라 뇌졸중 입원환자의 평균재원일수에 가장 큰 영향을 미치는 변수는 뇌졸중 발생유형이었으며, 의사결정나무를 이용하여 개발된 뇌졸중 입원환자의 중증도 보정 재원일수 모형 결과, 적정 재원일수와 실제 재원일수의 차이는 진료비지불방법, 의료기관 소재지, 병상규모가 모두 통계적으로 유의하게 나타났다. 따라서 뇌졸중 입원환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 개발된 모형을 의료기관의 의료정보시스템에 적용하고 관리하는 활동을 전개해야 할 것이다.
Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.
Journal of Information Science Theory and Practice
/
제7권4호
/
pp.56-64
/
2019
Planting intercropping in rubber plantations is another alternative for generating more income for farmers. However, farmers still lack the knowledge of choosing plants. In addition, information for decision making comes from many sources and is knowledge accumulated by the expert. Therefore, this research aims to create a decision support system for growing rubber trees for individual farmers. It aims to get the highest income and the lowest cost by using semantic web technology so that farmers can access knowledge at all times and reduce the risk of growing crops, and also support the decision supporting system (DSS) to be more intelligent. The integrated intercropping ontology and rule are a part of the decision-making process for selecting plants that is suitable for individual rubber plots. A list of suitable plants is important for decision variables in the allocation of planting areas for each type of plant for multiple purposes. This article presents designing and developing the intercropping ontology for DSS which defines a class based on the principle of intercropping in rubber plantations. It is grouped according to the characteristics and condition of the area of the farmer as a concept of the rubber plantation. It consists of the age of rubber tree, spacing between rows of rubber trees, and water sources for use in agriculture and soil group, including slope, drainage, depth of soil, etc. The use of ontology for recommended plants suitable for individual farmers makes a contribution to the knowledge management field. Besides being useful in DSS by offering options with accuracy, it also reduces the complexity of the problem by reducing decision variables and condition variables in the multi-objective optimization model of DSS.
관리종목은 상장폐지 가능성이 높은 기업들을 즉시 퇴출하기 보다는 시장 안에서 일정한 제약을 부여하고, 그러한 기업들에게 상장폐지 사유를 극복할 수 있는 시간적 기회를 주는 제도이다. 뿐만 아니라 이를 투자자 및 시장참여자들에게 공시하여 투자의사결정에 주의를 환기시키는 역할을 한다. 기업의 부실화로 인한 부도 예측에 관한 연구는 많이 있으나, 부실화 가능성이 높은 기업에 대한 사회, 경제적 경보체계라 할 수 있는 관리종목에 관한 연구는 상대적으로 매우 부족하다. 이에 본 연구는 코스닥 기업들 가운데 관리종목 지정 기업과 비관리종목 기업을 표본으로 삼아 로지스틱 회귀분석과 의사결정나무 분석을 이용하여 관리종목 지정 예측 모형을 개발하고 검증하였다. 분석결과에 따르면 로지스틱 회귀분석 모형은 ROE(세전계속사업이익), 자기자본현금흐름률, 총자산회전율을 사용하여 관리종목 지정을 예측하였으며, 전체 평균 예측 정확도는 검증용 데이터셋에 대해 86%의 높은 성능을 보여주었다. 의사결정나무 모형은 현금흐름/총자산과 ROA(당기순이익)를 통한 분류규칙을 적용하여 약 87%의 예측 정확도를 보여주었다. 로지스틱 회귀분석 기반의 관리종목 탐지 모형의 경우 ROE(세전계속사업이익)와 같은 구체적인 관리종목 지정 사유를 반영하면서 기업의 활동성에 초점을 맞추어 관리종목 지정 경향성을 설명하는 반면, 의사결정 관리종목 탐지 모형은 기업의 현금흐름을 중심으로 하여 관리종목 지정을 예측하는 것으로 나타났다.
최근 러시아·우크라이나 전쟁에서 볼 수 있듯이 군수지원은 현대전에서 빼놓을 수 없는 중요한 요소 중의 하나이다. 군수지원은 모의 논리의 특수성과 복잡성으로 인해 대부대 분석 모델과 전문적인 기능 모델 중심으로 발전되어 왔지만, 교전급 분석 모델에서는 군수지원에 대한 요구가 상대적으로 높지 않았다. 그러나 대대급 이하 제대에서도 무인 수송자산을 이용한 재보급 필요성이 제기되면서, 이의 전투 효과를 분석하기 위한 모의 기법도 함께 요구되고 있다. 이에 본 연구에서는 대대급 이하 제대의 탄약 재보급 논리를 기반으로 교전급 분석 모델을 위한 재보급 과업 모델을 설계한다. 재보급 과업 모델은 다음과 같은 순서로 도출되는 의사결정트리를 기반으로 동작한다. 먼저, 사전 반복 모의실험을 통해 여러 가지 쌍방 교전 조건과 아군의 탄 잔여량에 따른 피아 손실교환비를 수집한다. 이어서, 쌍방 교전 조건, 탄 잔여량, 손실교환비로 표현되는 의사결정 트리를 만든다. 의사결정트리는 전투모의 실행 간에 적의 위협 강도, 피지원 부대의 탄 잔여량 등을 고려하여 재보급 우선순위를 결정하는 데 사용된다. 끝으로 제안된 모델의 실행 가능성을 OneSAF 기반 소부대 전투 모의실험을 통해 입증한다.
본 논문은 머신러닝을 활용하여 교량 데이터 설계 시 기존 엔지니어의 구조해석결과 또는 경험 및 주관에 따라 슬래브 두께를 예측하여 왔던 프로세스를 머신러닝 기법을 적용하여 디지털 기반 의사결정이 가능하도록 제시한다. 본 연구에서는 슬래브 두께 선정을 구조해석 외에 머신러닝 기법을 활용하여 엔지니어에게 가이드 값을 제공하게 함으로써 신뢰성 있는 설계 환경을 구축하고자 한다. 교량 데이터 중 가장 많은 비중을 차지하고 있는 거더교를 기준으로 상부구조물 중 슬래브 두께를 예측하기 위한 예측모델 프로세스를 정의 하였다. 각 프로세스 별 예측 값을 산출하기 위하여 다양한 머신러닝 모델 (Linear Regress, Decision Tree, Random Forest, Muliti-layer Perceptron)을 프로세스별 경합하여 최적의 모델을 도출하였다. 본 연구를 통해 기존 구조해석을 통해서만 슬래브 두께 예측을 하였던 영역에 머신러닝 기법의 적용 가능성을 확인하였으며 정확도 또한 95.4%를 도출하였다, 향후 프로세스 확장 및 데이터를 지속 확보하여 예측모델 정확도를 향상시킨다면 공사 환경에 머신러닝 모델이 지속 활용될 수 있을 것으로 기대된다.
The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.
데이터마이닝은 많은 양의 데이터로부터 의사결정에 유용한 패턴을 발견하는 과정으로서 최근 경영 및 공학 분야의 폭넓은 영역에서 많은 관심을 모으고 있다. 어떤 그룹을 여러 하위그룹으로 분류해내는 일은 데이터마이닝의 주요 내용 중 하나이다. 의사결정나무로 알려진 트리기반 기법은 그러한 분류모형을 수립하는 데 효율적인 방안을 제공한다 트리학습에 있어서 우선적인 관건은 목표변수에 의해 측정되는 노드불순도를 최소화하는 것이다. 하지만 공정관측, 마케팅과학, 임상분석 등과 같은 문제에서는 여러 목표변수를 동시에 고려해야 하는 상황이 쉽게 등장하는 데, 본 논문의 목적은 이처럼 다변량 목표변수를 갖는 데이터셋에서 활용할 수 있는 노드불순도 측정방안을 제시하는 데 있다. 아울러 수치 예를 이용하여 적용결과에 대해 논의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.