• Title/Summary/Keyword: Decision Algorithm

Search Result 2,380, Processing Time 0.031 seconds

Probability Estimation Method for Imputing Missing Values in Data Expansion Technique (데이터 확장 기법에서 손실값을 대치하는 확률 추정 방법)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 2021
  • This paper uses a data extension technique originally designed for the rule refinement problem to handling incomplete data. This technique is characterized in that each event can have a weight indicating importance, and each variable can be expressed as a probability value. Since the key problem in this paper is to find the probability that is closest to the missing value and replace the missing value with the probability, three different algorithms are used to find the probability for the missing value and then store it in this data structure format. And, after learning to classify each information area with the SVM classification algorithm for evaluation of each probability structure, it compares with the original information and measures how much they match each other. The three algorithms for the imputation probability of the missing value use the same data structure, but have different characteristics in the approach method, so it is expected that it can be used for various purposes depending on the application field.

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

Detection of Red Pepper Powders Origin based on Machine Learning (머신러닝 기반 고춧가루 원산지 판별기법)

  • Ryu, Sungmin;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.355-360
    • /
    • 2022
  • As the increase cost of domestic red pepper and the increase of imported red pepper, damage cases such as false labeling of the origin of red pepper powder are issued. Accordingly we need to determine quickly and accurately for the origin of red pepper powder. The used method for presently determining the origin has the limitation in that it requires a lot of cost and time by experimentally comparing and analyzing the components of red pepper powder. To resolve the issues, this study proposes machine learning algorithm to classifiy domestic and imported red pepper powder. We have built machine learning model with 53 components contained in red pepper powder and validated. Through the proposed model, it was possible to identify which ingredients are importantly used in determining the origin. In the near future, it is expected that the cost of determining the origin can be further reduced by expanding to various foods as well as red pepper powder.

Function Expansion of Human-Machine Interface(HMI) for Small and Medium-sized Enterprises: Focused on Injection Molding Industries (중소기업을 위한 인간-기계 인터페이스(HMI) 기능 확장: 사출성형기업 중심으로)

  • Sungmoon Bae;Sua Shin;Junhong Yook;Injun Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.150-156
    • /
    • 2022
  • As the 4th industrial revolution emerges, the implementation of smart factories are essential in the manufacturing industry. However, 80% of small and medium-sized enterprises that have introduced smart factories remain at the basic level. In addition, in root industries such as injection molding, PLC and HMI software are used to implement functions that simply show operation data aggregated by facilities in real time. This has limitations for managers to make decisions related to product production other than viewing data. This study presents a method for upgrading the level of smart factories to suit the reality of small and medium-sized enterprises. By monitoring the data collected from the facility, it is possible to determine whether there is an abnormal situation by proposing an appropriate algorithm for meaningful decision-making, and an alarm sounds when the process is out of control. In this study, the function of HMI has been expanded to check the failure frequency rate, facility time operation rate, average time between failures, and average time between failures based on facility operation signals. For the injection molding industry, an HMI prototype including the extended function proposed in this study was implemented. This is expected to provide a foundation for SMEs that do not have sufficient IT capabilities to advance to the middle level of smart factories without making large investments.

Nakdong River Estuary Salinity Prediction Using Machine Learning Methods (머신러닝 기법을 활용한 낙동강 하구 염분농도 예측)

  • Lee, Hojun;Jo, Mingyu;Chun, Sejin;Han, Jungkyu
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Promptly predicting changes in the salinity in rivers is an important task to predict the damage to agriculture and ecosystems caused by salinity infiltration and to establish disaster prevention measures. Because machine learning(ML) methods show much less computation cost than physics-based hydraulic models, they can predict the river salinity in a relatively short time. Due to shorter training time, ML methods have been studied as a complementary technique to physics-based hydraulic model. Many studies on salinity prediction based on machine learning have been studied actively around the world, but there are few studies in South Korea. With a massive number of datasets available publicly, we evaluated the performance of various kinds of machine learning techniques that predict the salinity of the Nakdong River Estuary Basin. As a result, LightGBM algorithm shows average 0.37 in RMSE as prediction performance and 2-20 times faster learning speed than other algorithms. This indicates that machine learning techniques can be applied to predict the salinity of rivers in Korea.

Efficient Transformer Dissolved Gas Analysis and Classification Method (효율적인 변압기 유중가스 분석 및 분류 방법)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.563-570
    • /
    • 2018
  • This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.

Designing Integrated Diagnosis Platform for Heterogeneous Combat System of Surface Vessels (다기종 수상함 전투체계의 통합 진단 플랫폼 설계)

  • Kim, Myeong-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.186-188
    • /
    • 2021
  • The architecture named IDPS is a design concept of web-based integrated platform for heterogeneous naval combat system, which accomplishes efficiency(decreasing complexity) of diagnosis process and reduces time to diagnose system. Each type of surface vessel has its own diagnostic processes and applications, and that means it also requires its own diagnostic engineer(inefficiency in human resource management). In addition, man-based diagnostic causes quality issues such as difference approach of log analysis in accordance with engineer skills. Thus In this paper, we designed integrated diagnostic platform named IDPS with simplified common process regardless of type of surface vessel and we reinforced IDPS with status decision algorithm(SDA) that judges current software status of vessel based on gathered lots of logs. It will enable engineers to diagnose system more efficiently and to use more resources in utilizing SDA-analyzed diagnostic results.

  • PDF

Reinforcement Learning for Minimizing Tardiness and Set-Up Change in Parallel Machine Scheduling Problems for Profile Shops in Shipyard (조선소 병렬 기계 공정에서의 납기 지연 및 셋업 변경 최소화를 위한 강화학습 기반의 생산라인 투입순서 결정)

  • So-Hyun Nam;Young-In Cho;Jong Hun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.202-211
    • /
    • 2023
  • The profile shops in shipyards produce section steels required for block production of ships. Due to the limitations of shipyard's production capacity, a considerable amount of work is already outsourced. In addition, the need to improve the productivity of the profile shops is growing because the production volume is expected to increase due to the recent boom in the shipbuilding industry. In this study, a scheduling optimization was conducted for a parallel welding line of the profile process, with the aim of minimizing tardiness and the number of set-up changes as objective functions to achieve productivity improvements. In particular, this study applied a dynamic scheduling method to determine the job sequence considering variability of processing time. A Markov decision process model was proposed for the job sequence problem, considering the trade-off relationship between two objective functions. Deep reinforcement learning was also used to learn the optimal scheduling policy. The developed algorithm was evaluated by comparing its performance with priority rules (SSPT, ATCS, MDD, COVERT rule) in test scenarios constructed by the sampling data. As a result, the proposed scheduling algorithms outperformed than the priority rules in terms of set-up ratio, tardiness, and makespan.

Machine Learning Algorithm for Estimating Ink Usage (머신러닝을 통한 잉크 필요량 예측 알고리즘)

  • Se Wook Kwon;Young Joo Hyun;Hyun Chul Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.