• Title/Summary/Keyword: Decaying Vortex

Search Result 7, Processing Time 0.021 seconds

CHARACTERISTICS OF MATRICES IN THE P2P1 FINITE ELEMENT METHODS FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATION (P2P1 유한요소를 이용한 비압축성 Navier-Stokes 방정식 해법들의 행렬 특성)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.245-251
    • /
    • 2009
  • Numerical algorithms for solving the incompressible Navier-Stokes equations using P2P1 finite element are compared regarding the eigenvalues of matrices. P2P1 element allocates pressure at vertex nodes and velocity at both vertex and mid nodes. Therefore, compared to the P1P1 element, the number of pressure variables in the P2P1 element decreases to 1/4 in the case of two-dimensional problems and to 1/8 in the three-dimensional problems. Fully-implicit-integrated, semi-implicit- integrated and semi-segregated finite element formulations using P2P1 element are compared in terms of elapsed time, accuracy and eigenvlue distribution (condition number). For the comparison,they have been applied to the well-known benchmark problems. That is, the two-dimensional unsteady flows around a fixed circular cylinder and decaying vortex flow are adopted to check spatial accuracy.

  • PDF

A Study of Swirling Flow in a Cylindrical Tube Port 1, Velocity Profiles (수평 원통관내에서 Swirling Flow의 유동에 관한 연구(I))

  • Medwell, J.O.;Chang, T.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.265-275
    • /
    • 1989
  • An experimental study of decaying swirl air flow has been obtained by tangential inlet in a straight tube with Reynolds number range 20,000~40,000. The friction factor, swirl angle, velocity profiles and turbulent intensity are measured by using micro-manometer and hot-wire anemometer. It is found that the swirl flow behaviors depend on the swirl intensity along the test tube.

  • PDF

An unstructured finite volume method for unsteady incompressible flows with full second order accuracy (2차 정확도를 가지는 비정상 비압축성 유동장 해석을 위한 비정렬 유한 체적법의 개발)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.71-76
    • /
    • 2004
  • An extension of our recently developed locally linear reconstruction scheme to 2 dimensional incompressible flow solver is presented. The solver is based on a semi-implicit fractional step method in which the convective term is discretized by Adams-Bashforth method and the diffusion term by Crank-Nicolson method. Several numerical examples are tested to demonstrate the mesh type independent accuracy of the solver, which include decaying vortex flow, square cavity flow, and flow around a circular cylinder. The above examples are solved on quadrilateral or hybrid meshes. For all numerical examples, we obtained reasonable results.

  • PDF

STUDY ON THE SPLITTING ALGORITHMSOF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING P1P1/P2P1 FINITE ELEMENT FORMULATION (P2P1/P1P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구)

  • Cho Myung H.;Choi Hyoung G.;Yoo Jung Y.;Park Jae I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.117-124
    • /
    • 2005
  • Splitting algorithms of the incompressible Navier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and mid nodes. For comparison of the elapsed time and accuracy of the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-splitting method performs better than the conventional P1P1 splitting method in terms of both accuracy and computation time.

  • PDF

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

Study on the Segregation Algorithms of the Incompressible Navier-Stokes Equations Using P1P1/P2P1 Finite Element Formulation (P1P1/P2P1 유한요소 공식을 이용한 배압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구)

  • Choi Hyoung-G.;Yoo Jung-Y.;Park Jae-I.;Cho Myung-H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.262-269
    • /
    • 2006
  • Segregation algorithms of the incompressible Wavier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and the midpoint nodes. For a comparison of both the elapsed time and the accuracy between the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-segregation algorithm performs better than the conventional P1P1 segregation algorithm in terms of both accuracy and computation time.

Slat Noise Source Modeling of Multi-element Airfoil in High-lift Configuration

  • Hwang, Seung Tae;Han, Chang Kyun;Im, Yong Taek;Kim, Jong Rok;Bae, Youngmin;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • We investigate the slat noise generation mechanism by using large-eddy simulation (LES) and simple source modeling based on linearized Euler equations. An incompressible LES of an MD 30P30N three-element airfoil in the high-lift configuration is conducted at $Re_c=1.7{\times}10^6$. Using the total derivative of the hydrodynamic pressure (DP/Dt) acquired from the incompressible LES, representative noise sources in the slat cove region are characterized in terms of simple sources such as frequency-specific monopoles and dipoles. Acoustic radiation around the 30P30N multi-element airfoil is effectively computed using the Brinkman penalization method incorporated with the linearized Euler equation. The directivity pattern of $p^{\prime}_{rms}$ at $r=20c_{slat}$ in the multiple sources is closely compared to that obtained by the application of the LES/Ffowcs-Williams and Hawking's methods to the entire flow field. The power spectrum of p' at ${\theta}=290^{\circ}$ is in good agreement with the data reported in BANC-III, especially the broadband part of the spectrum with a decaying slope ${\propto}f^{-3}$.