• Title/Summary/Keyword: Decay Rate Method

Search Result 156, Processing Time 0.034 seconds

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정 (Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate)

  • 최은희
    • 대한환경공학회지
    • /
    • 제27권4호
    • /
    • pp.409-413
    • /
    • 2005
  • 본 논문에는 자가영양균의 최대비성장율 추정법이 제시되었다. 먼저 질산화균의 농도가 질산화 된 암모니아, 슬러지 일령 및 사멸계수를 이용하여 시뮬레이션 되었고, 다음단계로 과잉암모니아를 공급하여 질산화균의 호흡율을 측정하였다. 자가영양균의 최대비성장율은 ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$의 관계를 통해 계산되어질 수 있으며 추정된 최대비성장율은 운전기간에 걸쳐 일정한 값을 가지지 앉고 시간에 따라 변화한다는 결과를 얻었다. 본 연구를 통해 최대호흡율을 이용한 최대비성장율의 동적 추정법이 수행되었고, 일정한 최대비성장율를 이용한 처리장 운전결과 예측은 처리장 거동을 예측할 수 없으며 활성슬러지공정의 성능예측을 위한 시뮬레이션을 위해서는 동적 추정된 매개변수의 사용이 필요함을 확인하였다.

다연동 온실의 자연환기효율성 비교 분석 (Comparative Study on Efficiencies of Naturally-Ventilated Multi-Span Greenhouses in Korea)

  • 권순홍;정성원;권순구;박종민;최원식;김종순
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.8-18
    • /
    • 2017
  • This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions should be selected in advance. But these factors are not controlled and require tense many precision facilities and labor forces. Thus, the CFD simulation was used for the air stream to be analyzed qualitatively and quantitatively. In addition, for the ventilation effect analysis, the TGD (Tracer Gas Decay) was used to overcome the shortcomings of the current ventilation measurement method. The calculation error of ventilation rate using TGD was low (10.5%). Thus, the TGD is very effective in calculating the ventilation efficiency. The wind direction of 90 degrees showed the best ventilation effect. The ventilation rate also decreased along the air circulation path, and the rate was the lowest around the outlet. The computed fluid method (CFD) turned out to be a power tool for simulating flow behavior in greenhouse.

불확실성을 갖는 MIMO 시스템을 위한 선형행렬부등식 기반 PID 제어기 설계 방법 (An LMI-based PID Control Design Method for Uncertain MIMO Systems)

  • 이재관;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.750-754
    • /
    • 2005
  • This paper deals with the design problem of multivariable PID controllers guaranteeing the closed-loop system stability and a prescribed $H_\infty$ norm bound constraint. We reduce the problem to the static output feedback stabilization problem. We derive a necessary and sufficient condition f3r the existence of PID controllers and we give an explicit formula of PID controllers. We also give an existence condition of PID controllers guaranteeing a prescribed decay rate. Finally, we give an LMI-based design algorithm, together with a numerical design example.

연속회분식 반응기를 이용한 수산물 가공폐수 처리 (Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR))

  • 백병천;신항식
    • 상하수도학회지
    • /
    • 제8권1호
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

Comparison of Hyper-Parameter Optimization Methods for Deep Neural Networks

  • Kim, Ho-Chan;Kang, Min-Jae
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.969-974
    • /
    • 2020
  • Research into hyper parameter optimization (HPO) has recently revived with interest in models containing many hyper parameters, such as deep neural networks. In this paper, we introduce the most widely used HPO methods, such as grid search, random search, and Bayesian optimization, and investigate their characteristics through experiments. The MNIST data set is used to compare results in experiments to find the best method that can be used to achieve higher accuracy in a relatively short time simulation. The learning rate and weight decay have been chosen for this experiment because these are the commonly used parameters in this kind of experiment.

패션 의류 영상 분류 딥러닝 (Fashion Clothing Image Classification Deep Learning)

  • 신성윤;왕광싱;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.676-677
    • /
    • 2022
  • 본 논문에서는 패션 의류 이미지의 빠르고 정확한 분류를 달성하기 위해 최적화된 동적 붕괴 학습률과 개선된 모델 구조를 가진 딥 러닝 모델을 기반으로 하는 새로운 방법을 제안한다. Fashion-MNIST 데이터 셋에서 제안된 모델을 사용하여 실험을 수행하고 CNN, LeNet, LSTM 및 BiLSTM의 방법과 비교한다.

  • PDF

감가압법으로 주입한 피마자유-처리 목재의 내후성 평가 (Weatherproof-properties Evaluation of Castor Oil-impregnated Wood Using a Vacuum-pressure Method)

  • 권오경;최영서;김다예;최원실;이영규;김권민;최준원;양인
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.302-311
    • /
    • 2023
  • 본 연구는 천연 목재방부제로서 피마자유(castor oil, CSO)의 적용 가능성을 평가하기 위하여 수행하였다. 이를 위하여 CSO를 감가압법으로 국내외 목재수종에 주입한 후, 주입능, 용탈성, 내후성 등을 조사하였다. CSO 주입능은 수종별 해부학적 구조의 차이로 인하여 솔송, 잎갈, 단풍, 신갈나무 순으로 측정되었으나, 모든 수종에서 목재 내로 효과적으로 주입되었다. 용탈성의 경우, 잎갈나무를 제외하고 주입능이 높은 수종에서 용탈되는 양이 많았다. CSO의 점도 저하를 위한 에탄올의 첨가는 주입능 및 용탈성에 부정적인 영향을 미쳤다. 중량감소율을 이용하여 조사한 CSO-주입/용탈 시편의 목재부후균에 대한 내후성은 대조구와 비교하여 대부분의 처리목에서 매우 우수하였다. 특히 갈색부후균인 Fomitopsis palustris에 대하여 CSO만으로 구성된 약액(CSO-2)을 처리한 대부분의 처리목에서 부후가 발생하지 않거나, 매우 낮은 중량감소율를 보였다. 이는 주입된 CSO가 용탈과정에서 목재 내에 잔류하여 발생한 결과로서 X-ray microscope 관찰을 통하여 CSO의 잔류를 확인할 수 있었다. 한편 CSO-2를 주입한 후, 2주간 염수에 용탈시킨 스트립 형태의 시편은 모든 절삭방향에서 길이 변화가 거의 일어나지 않았다. 또한 CSO-2 주입/용탈 시편을 야외에 2주간 노출시킨 후, 측정한 중량증가율과 길이팽윤율도 대조구 시편과 비교하여 매우 낮아 내수성이 크게 향상된 것을 확인하였다. 따라서 CSO는 목재부후균의 생장 억제뿐만 아니라 치수안정 효과까지 제공함으로서 다양한 실내외 환경에서 천연 목재방부제로서 적용이 가능할 것으로 판단된다.

내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석 (Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking)

  • 채원식;이행섭;정재후;김동수
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석 (Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD)

  • 이상연;이인복;권경석;하태환;여욱현;박세준;김락우;조예슬;이승노
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.