Woojin Jeon;Jong-Min Yeom;Jae-Heon Jung;Kyoung-Wook Jin;Kyung-Soo Han
Korean Journal of Remote Sensing
/
v.39
no.6_1
/
pp.1273-1281
/
2023
Absolute radiometric calibration is a crucial process in converting the electromagnetic signals obtained from satellite sensors into physical quantities. It is performed to enhance the accuracy of satellite data, facilitate comparison and integration with other satellite datasets, and address changes in sensor characteristics over time or due to environmental conditions. In this study, field campaigns were conducted to perform vicarious calibration for the multispectral channels of the CAS500-1. Two valid field observations were obtained under clear-sky conditions, and the top-of-atmosphere (TOA) radiance was simulated using the MODerate resolution atmospheric TRANsmission 6 (MODTRAN 6) radiative transfer model. While a linear relationship was observed between the simulated TOA radiance of tarps and CAS500-1 digital numbers(DN), challenges such as a wide field of view and saturation in CAS500-1 imagery suggest the need for future refinement of the calibration coefficients. Nevertheless, this study represents the first attempt at absolute radiometric calibration for CAS500-1. Despite the challenges, it provides valuable insights for future research aiming to determine reliable coefficients for enhanced accuracy in CAS500-1's absolute radiometric calibration.
Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
Korean Journal of Poultry Science
/
v.50
no.4
/
pp.193-202
/
2023
Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.
KSCE Journal of Civil and Environmental Engineering Research
/
v.43
no.6
/
pp.873-881
/
2023
The evolution of civil engineering technology, exemplified by recent milestones like the completion of the Gangnam Global Business Center (GBC), has fostered the construction of expansive civil and architectural structures both above and below the earth's surface. This surge in construction necessitates a commensurate advancement in research and technology pertaining to safety protocols applicable to these vast edifices. Such protocols encompass a spectrum of concerns, ranging from the preemptive mitigation of accidents to the effective management of exigencies such as fires. As the trajectory of construction endeavors continues unabated, encompassing both subterranean and elevated domains, a concomitant imperative emerges to refine the methodologies underpinning precise indoor positioning. To address this need, an innovative web-based simulator has been devised to emulate indoor positioning scenarios for rigorous testing. This research further entails the development of an indoor positioning data Application Programming Interface (API) fortified by Geographic Information System (GIS) spatial operation techniques. This API is anchored in the construction of intricate test data, centered on the spatial layout of building 13 at the Electronics and Telecommunications Research Institute (ETRI). Consequently, the study renders feasible the expeditious provisioning of diverse signal-based and image-based spatial information, pivotal for enhancing the navigational acumen of mobile devices. Path delineation, cellular signal mapping, landmark identification, and ancillary navigational aids are among the manifold datasets promptly furnished by the indoor positioning data API. In summation, this study engenders a crucial leap towards the fortification of safety protocols and navigational precision within the expansive confines of modern architectural wonders.
Journal of the Korea Institute of Building Construction
/
v.23
no.5
/
pp.537-546
/
2023
For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.
As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.
With the growth of the food-catering industry, consumer preferences and the number of dine-in restaurants are gradually increasing. Thus, personalized recommendation services are required to select a restaurant suitable for consumer preferences. Previous studies have used questionnaires and star-rating approaches, which do not effectively depict consumer preferences. Online reviews are the most essential sources of information in this regard. However, previous studies have aggregated online reviews into long documents, and traditional machine-learning methods have been applied to these to extract semantic representations; however, such approaches fail to consider the surrounding word or context. Therefore, this study proposes a novel review textual-based restaurant recommendation model (RT-RRM) that uses deep learning to effectively extract consumer preferences from online reviews. The proposed model concatenates consumer-restaurant interactions with the extracted high-level semantic representations and predicts consumer preferences accurately and effectively. Experiments on real-world datasets show that the proposed model exhibits excellent recommendation performance compared with several baseline models.
Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
KIPS Transactions on Software and Data Engineering
/
v.12
no.12
/
pp.519-524
/
2023
In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.
As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.
Xi Hu;Xinwei Tao;Yueqiao Zhang;Zhongfeng Niu;Yong Zhang;Thomas Allmendinger;Yu Kuang;Bin Chen
Korean Journal of Radiology
/
v.22
no.11
/
pp.1777-1785
/
2021
Objective: To investigate the accuracy of the Agatston score obtained with the ultra-high-pitch (UHP) acquisition mode using tin-filter spectral shaping (Sn150 kVp) and a kVp-independent reconstruction algorithm to reduce the radiation dose. Materials and Methods: This prospective study included 114 patients (mean ± standard deviation, 60.3 ± 9.8 years; 74 male) who underwent a standard 120 kVp scan and an additional UHP Sn150 kVp scan for coronary artery calcification scoring (CACS). These two datasets were reconstructed using a standard reconstruction algorithm (120 kVp + Qr36d, protocol A; Sn150 kVp + Qr36d, protocol B). In addition, the Sn150 kVp dataset was reconstructed using a kVp-independent reconstruction algorithm (Sn150 kVp + Sa36d, protocol C). The Agatston scores for protocols A and B, as well as protocols A and C, were compared. The agreement between the scores was assessed using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. The radiation doses for the 120 kVp and UHP Sn150 kVp acquisition modes were also compared. Results: No significant difference was observed in the Agatston score for protocols A (median, 63.05; interquartile range [IQR], 0-232.28) and C (median, 60.25; IQR, 0-195.20) (p = 0.060). The mean difference in the Agatston score for protocols A and C was relatively small (-7.82) and with the limits of agreement from -65.20 to 49.56 (ICC = 0.997). The Agatston score for protocol B (median, 34.85; IQR, 0-120.73) was significantly underestimated compared with that for protocol A (p < 0.001). The UHP Sn150 kVp mode facilitated an effective radiation dose reduction by approximately 30% (0.58 vs. 0.82 mSv, p < 0.001) from that associated with the standard 120 kVp mode. Conclusion: The Agatston scores for CACS with the UHP Sn150 kVp mode with a kVp-independent reconstruction algorithm and the standard 120 kVp demonstrated excellent agreement with a small mean difference and narrow agreement limits. The UHP Sn150 kVp mode allowed a significant reduction in the radiation dose.
Hee Jeong Park;Sun Mi Kim;Bo La Yun;Mijung Jang;Bohyoung Kim;Soo Hyun Lee;Hye Shin Ahn
Korean Journal of Radiology
/
v.21
no.4
/
pp.431-441
/
2020
Objective: To compare the diagnostic performance and interobserver variability of strain ratio obtained from one or two regions of interest (ROI) on breast elastography. Materials and Methods: From April to May 2016, 140 breast masses in 140 patients who underwent conventional ultrasonography (US) with strain elastography followed by US-guided biopsy were evaluated. Three experienced breast radiologists reviewed recorded US and elastography images, measured strain ratios, and categorized them according to the American College of Radiology breast imaging reporting and data system lexicon. Strain ratio was obtained using the 1-ROI method (one ROI drawn on the target mass), and the 2-ROI method (one ROI in the target mass and another in reference fat tissue). The diagnostic performance of the three radiologists among datasets and optimal cut-off values for strain ratios were evaluated. Interobserver variability of strain ratio for each ROI method was assessed using intraclass correlation coefficient values, Bland-Altman plots, and coefficients of variation. Results: Compared to US alone, US combined with the strain ratio measured using either ROI method significantly improved specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve (AUC) (all p values < 0.05). Strain ratio obtained using the 1-ROI method showed higher interobserver agreement between the three radiologists without a significant difference in AUC for differentiating breast cancer when the optimal strain ratio cut-off value was used, compared with the 2-ROI method (AUC: 0.788 vs. 0.783, 0.693 vs. 0.715, and 0.691 vs. 0.686, respectively, all p values > 0.05). Conclusion: Strain ratios obtained using the 1-ROI method showed higher interobserver agreement without a significant difference in AUC, compared to those obtained using the 2-ROI method. Considering that the 1-ROI method can reduce performers' efforts, it could have an important role in improving the diagnostic performance of breast US by enabling consistent management of breast lesions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.