• 제목/요약/키워드: Data transmission and reception

Search Result 193, Processing Time 0.028 seconds

A Study on Data Transmission Using Dual Frequency (Dual 주파수를 이용한 Data 전송에 관한 연구)

  • Lee, Jin;Park, Sung Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.398-402
    • /
    • 2018
  • The following conclusions were obtained after analyzing the data transmission characteristics using two frequencies and studying a system that selects data with a good reception frequency as a priority data. Data transmission and reception using two frequencies were measured at -41 to -51 dBm when the frequency was normal, and data transmitted at 900 MHz was selected as priority data. When priority frequency failure occurred, the frequency reception data of the next rank was automatically adopted, and when the frequency of the next rank was disturbed, the priority frequency search was performed again. The above results show that the use of two frequencies enables more stable data transmission and transmission, and further studies should be continued to expand the transmission and reception distances.

Design and Implementation of MAC Protocol for Wireless LAN (무선 LAN MAC 계층 설계 및 구현)

  • 김용권;기장근;조현묵
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.253-256
    • /
    • 2001
  • This paper describes a high speed MAC(Media Access Control) function chip for IEEE 802.11 MAC layer protocol. The MAC chip has control registers and interrupt scheme for interface with CPU and deals with transmission/reception of data as a unit of frame. The developed MAC chip is composed of protocol control block, transmission block, and reception block which supports the BCF function in IEEE 802.11 specification. The test suite which is adopted in order to verify operation of the MAC chip includes various functions, such as RTS-CTS frame exchange procedure, correct IFS(Inter Frame Space)timing, access procedure, random backoff procedure, retransmission procedure, fragmented frame transmission/reception procedure, duplicate reception frame detection, NAV(Network Allocation Vector), reception error processing, broadcast frame transmission/reception procedure, beacon frame transmission/reception procedure, and transmission/reception FIEO operation. By using this technique, it is possible to reduce the load of CPU and firmware size in high speed wireless LAN system.

  • PDF

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

The Study Active-based for Improvement of Reliablity In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 신뢰성 향상을 위한 액티브 기반연구)

  • 박경배;강경인;유재휘;김진용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.188-198
    • /
    • 2002
  • In this paper, we propose an active network to support reliable data transmission in the mobile ad-hoc network. The active network uses DSR(Dynamic Source Routing) protocol as its basic routing protocol, and uses source and destination nodes as key active nodes. For reliable improvement the source node is changed to source active node to add function that its buffer to store the last data with the flow control for data transmission per destination node. The destination node is changed to destination active node to add function that it requests the re-transmission for data that was not previously received by the destination active node with the flow control for data reception per source active node As the result of evaluation. we found the proposed active network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 95% data reception rate, which is improvement of 3.5737% reception rate compared with none active network, for continuously fast moving mobile ad-hoc network.

  • PDF

Image Data Transmission and Receiving System of KITSAT-3-Performance of initial operation (우리별3호 영상데이터 송수신 시스템 - 초기운용 성능 실험)

  • 신동석;김탁곤;최욱현
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • KITSAT-3, the third satellite of KITSAT series which has been developed for the last four and half years with purely Korean design and implementation technology, was launched successfully at last. All subsystems were tested and validated during the initial operation of the satellite. During the initaial operation phase, the Earth imaging camera on board KITSAT-3 acquisited several tens of scenes all over the world and transmitted the image data to ground station. The quality of images and the reliability of data transmission-reception system were tested qualititively and quantititively, respectively. In this paper, we summarize the camera, data handling, on-board memory, and image data transmission system of KITSAT-3 as well as the image receiving and archiving system in ground station. The error rate of image data transmission and reception was tested during the initial operation phase. The average data transmission error rate satisfied the initial requirement of less than 1%. The error rate will be reduced through the continuous work of test and stabilization of the ground system hardware.

The QoS support using DSR protocol In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 DSR 프로토콜을 이용한 QoS 지원)

  • Park, Gyong-Bae;Kang, Kyoeng-In;Oh, Se-Duck
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.63-71
    • /
    • 2003
  • In this paper, we propose an DSR(Dynamic Source Routing) protocol to support QoS for reliable data transmission in the mobile ad-hoc network. The proposed algorithm uses DSR protocol to support QoS as its basic routing protocol, and uses the nodes which are between source and destination nodes as key QoS support. Because of moving nodes there is some problem that is restricted reliable data transmission. For solve this problem, source node set up the QoS link with destination node. The nodes that are located at QoS link and find out loss of transmission path save the transmitting data packets. Those search a new transmission path to destination node and transmit the saved data packet to destination node. As the result of evaluation, we found the proposed QoS network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 96% data reception rate, which is improvement of 3.7737% reception rate compared with none QoS network, for continuously fast moving mobile ad-hoc network.

  • PDF

Correlation Analysis of Transmission and Reflection Angle of Propagation Characteristics from 13-28 GHz

  • Kim, Yong Won;Jeong, Won Ho;Ju, Sang Lim;Kim, Kyung Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • In order to derive reliable propagation models for future millimeter-wave frequency indoor pico-cellular communications systems, accurate reflectivity data of building materials is necessary. The broad variety of building materials and construction codes makes accurate attenuation prediction very difficult without the support of specific construction data or measurements. This paper derives a transmission and reflection coefficient based on 13 GHz to 28 GHz measurement data. Transmission and reflection is measured by applying change in the reception angle of each building material, such as plasterboard. The transmission and reflection coefficient derived shows a correlation between frequency dependence and angle. As a result, as the reception angle is reduced, the reflected angle from the transmitter that could be received increases, showing that there is a correlation. In addition, the fundamental investigations carried out lay the foundation for radio channel-related research, which is essential for the development of future millimeter-wave communications systems.

Analysis of TCP packet by Protocol Analysis module Design (프로토콜 분석모듈 설계에 의한 TCP 패킷 분석)

  • Eom, Gum-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.234-236
    • /
    • 2004
  • Transmission control protocol(TCP) is protocol used in internet. TCP is seldom transmission error and is protocol based on wire environment. TCP uses 3 way handshake ways, data transmission control through windows size, data transmission control through reception confirmation, sliding window for packet delivery. In this study, designed TCP packet ion module for analyze the TCP segments & correct information about TCP. TCP capture in internet using designed TCP module and analysed TCP segments composition. Through this, could analyze the correct information of protocol in network.

  • PDF

The Operation Method of Coordinated Multi-point Transmission/Reception in Cloud Base Station (클라우드 기지국에서의 조정 다중점 송수신 운용 방법)

  • Park, Soon-Gi;Shin, Yeon-Seung;Song, Pyeong-Jung;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.775-784
    • /
    • 2013
  • Mobile operators are considering a variety of technical measures to cope with the explosion of data while reducing TCO(Total Cost of Ownership) of their networks. In this paper, to investigate the possibility about one of such technical measures, system level simulation to evaluate the performance of the capacity and mobility was performed in cloud base station structure to apply coordinated multi-point transmission and reception. As a result, we find out that system capacity and mobility performance may be improved according to the scale and application area of cloud base station with the operation of coordinated multi-point transmission and reception, and these mutual causality can provide practical guidelines to mobile network's operation.

Design and Implementation of the Multi-Mode Mobile Broadcasting EWS Encoding and Decoding Systems (멀티모드 이동 방송용 EWS(Emergency Warning System) 송·수신 시스템 설계 및 구현)

  • Kwon, Ki Won;Park, Yong Suk;Park, Se Ho;Paik, Jong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1281-1288
    • /
    • 2012
  • This paper presents the design and implementation of a multi-mode mobile broadcasting Emergency Warning System (EWS) transmission and reception system which enables the propagation of disaster information using the encoding and transmission, reception and decoding methods specified in diverse mobile broadcasting standards. The implemented system supports global mobile broadcasting standards such as Terrestrial Digital Multimedia Broadcasting (T-DMB), Digital Video Broadcasting-Handheld (DVB-H), Integrated Services Digital Broadcasting-Terrestrial (ISDB-T), and the Digital Radio Mondiale (DRM) digital radio standard. The system consists of two key part: an encoding/transmission part and a reception/decoding part. The multi-mode mobile broadcasting EWS encoding and transmission system generates EWS data according to each broadcasting specification. The generated EWS data is then transmitted through a channel interface which meets the commercial broadcasting equipment specification. The receiver system receives and decodes the EWS data on a single hardware platform and can display the results on screen. Verification and conformity testing has been carried out on the implemented system by transmitting emergency data for each mode in real-time and displaying the received information in text on the receiver display.