• Title/Summary/Keyword: Data sparsity

Search Result 176, Processing Time 0.022 seconds

Nonparametric logistic regression based on sparse triangulation over a compact domain

  • Seoyeon Kim;Kwan-Young Bak
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Based on the investigation of logistic regression models utilizing sparse triangulation within a compact domain in ℝ2, this study addresses the limited research extending the triogram model to logistic regression. A primary challenge arises from the potential instability induced by a large number of vertices, hindering the effective modeling of complex relationships. To mitigate this challenge, we propose introducing sparsity to boundary vertices of the triangulation based on the Ramer-Douglas-Peucker algorithm and employing the K-means algorithm for adaptive vertex initialization. A second order coordinate-wise descent algorithm is adopted to implement the proposed method. Validation of the proposed algorithm's stability and performance assessment are conducted using synthetic and handwritten digit data (LeCun et al., 1989). Results demonstrate the advantages of our method over existing methodologies, particularly when dealing with non-rectangular data domains.

Big IoT Healthcare Data Analytics Framework Based on Fog and Cloud Computing

  • Alshammari, Hamoud;El-Ghany, Sameh Abd;Shehab, Abdulaziz
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1238-1249
    • /
    • 2020
  • Throughout the world, aging populations and doctor shortages have helped drive the increasing demand for smart healthcare systems. Recently, these systems have benefited from the evolution of the Internet of Things (IoT), big data, and machine learning. However, these advances result in the generation of large amounts of data, making healthcare data analysis a major issue. These data have a number of complex properties such as high-dimensionality, irregularity, and sparsity, which makes efficient processing difficult to implement. These challenges are met by big data analytics. In this paper, we propose an innovative analytic framework for big healthcare data that are collected either from IoT wearable devices or from archived patient medical images. The proposed method would efficiently address the data heterogeneity problem using middleware between heterogeneous data sources and MapReduce Hadoop clusters. Furthermore, the proposed framework enables the use of both fog computing and cloud platforms to handle the problems faced through online and offline data processing, data storage, and data classification. Additionally, it guarantees robust and secure knowledge of patient medical data.

Compositional data analysis by the square-root transformation: Application to NBA USG% data

  • Jeseok Lee;Byungwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.349-363
    • /
    • 2024
  • Compositional data refers to data where the sum of the values of the components is a constant, hence the sample space is defined as a simplex making it impossible to apply statistical methods developed in the usual Euclidean vector space. A natural approach to overcome this restriction is to consider an appropriate transformation which moves the sample space onto the Euclidean space, and log-ratio typed transformations, such as the additive log-ratio (ALR), the centered log-ratio (CLR) and the isometric log-ratio (ILR) transformations, have been mostly conducted. However, in scenarios with sparsity, where certain components take on exact zero values, these log-ratio type transformations may not be effective. In this work, we mainly suggest an alternative transformation, that is the square-root transformation which moves the original sample space onto the directional space. We compare the square-root transformation with the log-ratio typed transformation by the simulation study and the real data example. In the real data example, we applied both types of transformations to the USG% data obtained from NBA, and used a density based clustering method, DBSCAN (density-based spatial clustering of applications with noise), to show the result.

A Causal Recommendation Model based on the Counterfactual Data Augmentation: Case of CausRec (반사실적 데이터 증강에 기반한 인과추천모델: CausRec사례)

  • Hee Seok Song
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.29-38
    • /
    • 2023
  • A single-learner model which integrates the user's positive and negative perceptions is proposed by augmenting counterfactual data to the interaction data between users and items, which are mainly used in collaborative filtering in this study. The proposed CausRec showed superior performance compared to the existing NCF model in terms of F1 value and AUC in experiments using three published datasets: MovieLens 100K, Amazon Gift Card, and Amazon Magazine. Compared to the existing NCF model, the F1 and AUC values of CausRec showed 1.2% and 2.6% performance improvement in MovieLens 100K data, and 2.2% and 10% improvement in Amazon Gift Card data, respectively. In particular, in experiments using Amazon Magazine data, F1 and AUC values were improved by 11.7% and 21.9%, respectively, showing a significant performance improvement effect. The performance of CausRec is improved because both positive and negative perceptions of the item were reflected in the recommendation at the same time. It is judged that the proposed method was able to improve the performance of the collaborative filtering because it can simultaneously alleviate the sparsity and imbalance problems of the interaction data.

Estimation and variable selection in censored regression model with smoothly clipped absolute deviation penalty

  • Shim, Jooyong;Bae, Jongsig;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1653-1660
    • /
    • 2016
  • Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desirable properties for penalty functions like as unbiasedness, sparsity and continuity. In this paper, we deal with the regression function estimation and variable selection based on SCAD penalized censored regression model. We use the local linear approximation and the iteratively reweighted least squares algorithm to solve SCAD penalized log likelihood function. The proposed method provides an efficient method for variable selection and regression function estimation. The generalized cross validation function is presented for the model selection. Applications of the proposed method are illustrated through the simulated and a real example.

Development of LPAKO : Software of Simplex Method for Liner Programming (단체법 프로그램 LPAKO 개발에 관한 연구)

  • 박순달;김우제;박찬규;임성묵
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.49-62
    • /
    • 1998
  • The purpose of this paper is to develope a large-scale simplex method program LPAKO. Various up-to-date techniques are argued and implemented. In LPAKO, basis matrices are stored in a LU factorized form, and Reid's method is used to update LU maintaining high sparsity and numerical stability, and further Markowitz's ordering is used in factorizing a basis matrix into a sparse LU form. As the data structures of basis matrix, Gustavson's data structure and row-column linked list structure are considered. The various criteria for reinversion are also discussed. The dynamic steepest-edge simplex algorithm is used for selection of an entering variable, and a new variation of the MINOS' perturbation technique is suggested for the resolution of degeneracy. Many preprocessing and scaling techniques are implemented. In addition, a new, effective initial basis construction method are suggested, and the criteria for optimality and infeasibility are suggested respectively. Finally, LPAKO is compared with MINOS by test results.

  • PDF

A personalized recommendation methodology using web usage mining and decision tree induction (웹 마이닝과 의사결정나무 기법을 활용한 개인별 상품추천 방법)

  • 조윤호;김재경
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.342-351
    • /
    • 2002
  • A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies.

  • PDF

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

Analysis of internet addiction in Korean adolescents using sparse partial least-squares regression (희소 부분 최소 제곱법을 이용한 우리나라 청소년 인터넷 중독 자료 분석)

  • Han, Jeongseop;Park, Soobin;Lee, onghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.253-263
    • /
    • 2018
  • Internet addiction in adolescents is an important social issue. In this study, sparse partial least-squares regression (SPLS) was applied to internet addiction data in Korean adolescent samples. The internet addiction score and various clinical and psychopathological features were collected and analyzed from self-reported questionnaires. We considered three PLS methods and compared the performance in terms of prediction and sparsity. We found that the SPLS method with the hierarchical likelihood penalty was the best; in addition, two aggression features, AQ and BSAS, are important to discriminate and explain latent features of the SPLS model.