• Title/Summary/Keyword: Data sensing-control

Search Result 500, Processing Time 0.031 seconds

Reference Point Projection Method for Improved Dynamics of Solar Array Hardware Emulation

  • Wellawatta, Thusitha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.126-128
    • /
    • 2018
  • Solar array simulator (SAS) is a special DC power supply that regulates the output voltage or current to emulate characteristics of photovoltaic (PV) panels. Especially, the control of SAS is a challenging task due to the nonlinearity in the output curve, which is dependent on irradiance as well as temperature and is determined by panel materials. Conventionally, both current-mode control and voltage-mode control should be alternated by partitioning the operating curve into multiple sections, which is not only for the measurement noise problem with the feedback sensing but also for the control stability issue near the maximum power point. However, the occurrence of transition among different controllers may deteriorate the overall performance. To eliminate the mode transitions, a novel single controller scheme has been introduced in this paper, where the reference operating projection technique enables simple, smooth and numerically stable control. Theoretical consideration on the loop stability issue is discussed and the performance is verified experimentally for the emulation of a PV panel data in view of stability and response speed.

  • PDF

The Remote Control of Mobile Robots On The Web (웹을 이용한 이동로봇의 원격제어)

  • Ok, Jin-Sam;Kang, Geun-Taek;Lee, Won-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2723-2725
    • /
    • 2000
  • It is sometimes necessary to observe the working environment of a robot to control it in the remote location. The remote sensing data and control commands are transmitted via various media such as radio, microwave, and computer network. In this paper we propose an advanced technique of the remote control of mobile robots on the web. The image separation is included in the proposed algorithm to control mobile robots in the real-time. We transmit the positions of a mobile robot and obstacles instead of transmitting the full frame image. An experiment is performed to show the efficiency of the proposed algorithm.

  • PDF

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • Sim, Kwee-Bo;Byun, Kwang-Sub;Park, Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.287-292
    • /
    • 2003
  • The ability of robot is being various and complex. The robot is utilizing distance, image data and voice data for sensing its circumstance. This paper suggests the 2-layer fuzzy control as the algorithm that control robot with various sensor information. In a obstacle avoidance, it utilizes many range finders and classifies them into 3parts(front, left, right). In 3 sub-controllers, the controller executes fuzzy conference. And then it executes combined control with a combination of outputs of 3 sub-controllers in the second step. The text compares the 2-layer fuzzy controller with the hierarchical fuzzy controller that has analogous structure. And the performance of the 2-layer fuzzy controller is confirmed by application this controller to robot following, simulation to each other and real experiment.

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

Development of Quality Control Method for Visibility Data Based on the Characteristics of Visibility Data (시정계 자료 특성을 고려한 시정계 자료 품질검사 기법 개발)

  • Oh, Yu-Joo;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.707-723
    • /
    • 2020
  • In this study, a decision tree type of quality control (QC) method was developed to improve the temporal-spatial representation and accuracy of the visibility data being operated by the Korea Meteorological Administration (KMA). The quality of the developed QC method was evaluated through the application to the 3 years (2016.03-2019.02) of 290 stations visibility data. For qualitative and quantitative verification of the developed QC method, visibility and naked-eye data provided by the KMA and QC method of the Norwegian Meteorological Institute (NMI) were used. Firstly, if the sum of missing and abnormal data exceeds 10% of the total data, the corresponding point was removed. In the 2nd step, a temporal continuity test was performed under the assumption that the visibility changes continuously in time. In this process, the threshold was dynamically set considering the different temporal variability depending on the visibility. In the 3rd step, the spatial continuity test was performed under the assumption of spatial continuity for visibility. Finally, the 10-minute visibility data was calculated using weighted average method, considering that the accuracy of the visibility meter was inversely proportional to the visibility. As results, about 10% of the data were removed in the first step due to the large temporal-spatial variability of visibility. In addition, because the spatial variability was significant, especially around the fog area, the 3rd step was not applied. Through the quantitative verification results, it suggested that the QC method developed in this study can be used as a QC tool for visibility data.

Signal Processing for Stabilizing Output of Fine Dust Sensor (미세먼지 센서 출력의 안정화를 위한 신호처리)

  • Jung, Sang-Wook;Park, Jun-Hyeon;Kim, Ju-An;Kim, Jae-Wook;Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.344-346
    • /
    • 2018
  • Air pollution has become a social issue. Particularly, interest in fine dust is increasing. Various kinds of sensors are being used to measure fine dust. The most commonly used infrared detection dust sensors operate by sensing the diffraction of light through an infrared receiver and sensing the light reflected by the dust in the air. However, this method has a drawback in which accurate data analysis is difficult due to deviation caused by the noise during measurement. In order to overcome such drawbacks, in this thesis, a low pass filter algorithm of FIR(Finite Impulse Response) filter was designed and implemented.

  • PDF

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

The Analysis of Accuracy in According to the Registration Methods of Terrestrial LiDAR Data for Indoor Spatial Modeling (건물 실내 공간 모델링을 위한 지상라이다 영상 정합 방법에 따른 정확도 분석)

  • Kim, Hyung-Tae;Pyeon, Mu-Wook;Park, Jae-Sun;Kang, Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2008
  • For the indoor spatial modeling by terrestrial LiDAR and the analyzing its positional accuracy result, two terrestrial LiDARs which have different specification each other were used at test site. This paper shows disparity of accuracy between (1) the structural coordinate transformation by point cloud unit using control points and (2) the relative registration among all point cloud units then structural coordinate transformation in bulk, under condition of limited number of control points. As results, the latter had smaller size and distribution of errors than the former although different specifications and acquistion methods are used.

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

Development of the off-vertical rotatory chair and visual stimulation system for evaluation of the vestibular function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • 김규겸;고종선;박병림;김인동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.325-332
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement, It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission. Detailed data was described.

  • PDF