In this study, rainfall adjust and forecasting using artificial neural network(ANN) which includes a correlation coefficient is application in Seoul region. It analyzed one-hour rainfall data which has been reported in 25 region in seoul during from 2000 to 2006 at rainfall observatory by AWS. The ANN learning algorithm apply for input data that each region using cross-correlation will use the highest correlation coefficient region. In addition, rainfall adjust analyzed the minimum error based on correlation coefficient and determination coefficient related to the input region. ANN model used back-propagation algorithm for learning algorithm. In case of the back-propagation algorithm, many attempts and efforts are required to find the optimum neural network structure as applied model. This is calculated similar to the observed rainfall that the correlation coefficient was 0.98 in missing rainfall adjust at 10 region. As a result, ANN model has been for suitable for rainfall adjust. It is considered that the result will be more accurate when it includes climate data affecting rainfall.
본 논문에서는 텍스쳐 감지를 이용한 화소값 기울기 필터 및 중간값 필터 기반의 비디오 시퀀스 디인터레이싱 알고리듬을 제안한다. 먼저 보간 할 픽셀의 주변 픽셀들을 이용하여 현재 보간 할 영역이 텍스쳐가 존재하는 영역인지 아니면 평탄한 영역인지를 판단한다. 제안하는 알고리듬에서는 보간 할 영역이 평탄한 영역으로 판단되면 중간값 필터를 이용하여 보간을 하고, 텍스쳐 영역으로 판단되면 화소값 기울기 필터를 이용하여 보간을 하게 된다. 그러므로 현재의 보간 할 영역은 두 개의 카테고리로 분류 할 수 있다. 제안하는 알고리듬은 상황에 맞게 적응적으로 보간을 수행하므로 좀 더 선명하고 정확한 영상을 얻을 수 있다. 그리고 여러 가지 CIF 동영상에 대한 실험 결과는 제안하는 알고리듬이 기존의 알고리듬 보다 객관적, 주관적으로 우수함을 보여준다.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.220-225
/
2021
Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.
The shape of crotch area is very important to develop functional clothing as well as other ergonomic goods such as chair or saddle etc. However, it is inevitable that 3D scanned image of crotch would have missing part due to its folded shape including overlapping legs nearby. Therefore, the objectives of this research was to compare reconstruction methods of missing parts at crotch using seven dummies of real men's replicas. Two reconstruction methods adopted were kinds of 'fill- hole' in Rapidform 2004, one was 'smooth' and the other was 'curvature'. Each restored image was compared with the original shape of the dummies. As results, the average distance was 0.66mm between original and 'smooth' treated images and 0.59mm between original and 'curvature' treated, which was not statistically different. Average area of restored crotch region was $8740.04cm^2$ by 'smooth' method and $8405.02cm^2$ by 'curvature' method which is close to the original area of $8413.76cm^2$. Statistical difference was found between images of original and 'smooth' ones$(p=0.04^*)$. However, there was no difference between original and 'curvature' treated images, which indicates that 'curvature' method is more useful to fill the hole compared with 'smooth' method.
The 3th International Conference on Construction Engineering and Project Management
/
pp.83-90
/
2009
Natural disasters, such as the recent floods in the Midwest, Hurricane Ike in the Gulf coast region (U.S.), and the earthquake in Sichuan (China), cause severe damage to the infrastructure as well as the associated industries and communities that rely on the infrastructure. The estimated damages due to Hurricane Ike in 2008 were a staggering $27 billion, the third worst in U.S. history. In addition, the worst earthquake in three decades in Sichuan resulted in about 90,000 people dead or missing and $20 billion of the estimated loss. A common observation in the analyses of these natural disaster events is the inadequacy of critical infrastructure to withstand the forces of natural calamities and the lack of mitigation strategies when they occur on the part of emergency-related organizations, industries, and communities. If the emergency-related agencies could identify and fortify the vulnerable critical infrastructure in the preparedness stage, the damage and impacts can be significantly reduced. Therefore, it is important to develop a decision support system (DSS) for identifying region-specific mitigation strategies based on the inter-relationships between the infrastructure and associated industries and communities in the affected region. To establish effective mitigation strategies, relevant data were collected from the affected areas with respect to the technical, social, and economic impact levels. The data analysis facilitated identifying the major factors, such as vulnerability, criticality, and severity, for developing a DSS. Customized mitigation strategies that will help agencies prepare, respond, and recover according to the disaster response were suggested.
The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.
International Journal of Computer Science & Network Security
/
제21권2호
/
pp.120-130
/
2021
The spinal cord or CSF surgery is a very complex process. It requires continuous pre and post-surgery evaluation to have a better ability to diagnose the disease. To detect automatically the suspected areas of tumors and symptoms of CSF leakage during the development of the tumor inside of the brain. We propose a new method based on using computer software that generates statistical results through data gathered during surgeries and operations. We performed statistical computation and data collection through the Google Source for the UK National Cancer Database. The purpose of this study is to address the above problems related to the accuracy of missing hybrid KNN values and finding the distance of tumor in terms of brain cancer or CSF images. This research aims to create a framework that can classify the damaged area of cancer or tumors using high-dimensional image segmentation and Laplace transformation method. A high-dimensional image segmentation method is implemented by software modelling techniques with measures the width, percentage, and size of cells within the brain, as well as enhance the efficiency of the hybrid KNN algorithm and Laplace transformation make it deal the non-zero values in terms of missing values form with the using of Frobenius Matrix for deal the space into non-zero values. Our proposed algorithm takes the longest values of KNN (K = 1-100), which is successfully demonstrated in a 4-dimensional modulation method that monitors the lighting field that can be used in the field of light emission. Conclusion: This approach dramatically improves the efficiency of hybrid KNN method and the detection of tumor region using 4-D segmentation method. The simulation results verified the performance of the proposed method is improved by 92% sensitivity of 60% specificity and 70.50% accuracy respectively.
디지털 기술의 발달은 치의학의 큰 변화를 일으키고 있고, 이러한 디지털 워크플로는 보철 치료 영역에서도 다양한 3D 데이터들을 하나로 중첩시켜, 진단과 보철물 제작에 활용되고 있다. 디지털 데이터를 종합하여 형성된 가상 환자에게서 계획된 진단과 보철물의 형성은 기존 통상적인 방법에 비해 보다 더 직관적으로 보철 치료의 결과를 시뮬레이션 할 수 있고, 이로 인해 심미적인 보철 치료의 예측성을 높일 수 있다. 본 증례에서는 디지털 워크플로를 통해 상악 전치부 선천성 결손 부위를 고정성 보철물로 제작하여 기능적, 심미적으로 만족할 만한 임상적 결과를 얻었으므로 이를 보고하는 바이다.
Amur grayling, Thymallus grubii, is an important economic cold freshwater fish originally found in the Amur basin. Currently, suffering from loss of habitat and shrinking population size, T. grubii is restricted to the mountain river branches of the Amur basin. In order to assess the genetic diversity, population genetic structure and infer the evolutionary history within the species, we analysised the whole mitochondrial DNA control region (CR) of 95 individuals from 10 rivers in China, as well as 12 individuals from Ingoda/Onon and Bureya River throughout its distribution area. A total of 64 variable sites were observed and 45 haplotypes were identified excluding sites with gaps/missing data. Phylogenetic analysis was able to confidently predict two subclade topologies well supported by maximum-parsimony and Bayesian methods. However, basal branching patterns cannot be unambiguously estimated. Haplotypes from the mitochondrial clades displayed local homogeneity, implying a strong population structure within T. grubii. Analysis of molecular variance detected significant differences among the different geographical rivers, suggesting that T. grubii in each river should be managed and conserved separately.
Jeon, Kiwan;Kang, Sung-Ho;Ahn, Chi Young;Kim, Sungwhan
Journal of the Korean Society for Industrial and Applied Mathematics
/
제18권2호
/
pp.157-166
/
2014
If there are metals located in the X-ray scanned object, a point outside the metals has its range of projection angle at which projections passing through the point are disturbed by the metals. Roughly speaking, this implies that attenuation information at the point is missing in the blocked projection range. So conventional projection completion MAR algorithms to use the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstructing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to overcome this problem, we propose the algebraic correction technique (ACT) to utilize a pre-reconstructed interim image of the attenuation coefficient outside the metal region which is obtained by solving a linear system designed to reduce computational costs. The reconstructed interim image of the attenuation coefficient is used as prior information for MAR. Numerical simulations support that the proposed correction technique shows better performance than conventional inpainting techniques such as the total variation and the harmonic inpainting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.