• Title/Summary/Keyword: Data feature analysis

Search Result 1,397, Processing Time 0.034 seconds

Feature Analysis based on Genetic Algorithm for Diagnosis of Misalignment (정렬불량 진단을 위한 유전알고리듬 기반 특징분석)

  • Ha, Jeongmin;Ahn, Byunghyun;Yu, Hyeontak;Choi, Byeongkeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.189-194
    • /
    • 2017
  • An compressor that is combined with the rotor and pneumatic technology has been researching for the performance of pressure. However, the control of operations, an accurate diagnosis and the maintenance of compressor system are limited though the simple structure of compressor and compression are advantaged to reduce the energy. In this paper, the characteristic of the compressor operating under the normal or abnormal condition is realized. and the efficient diagnosis method is proposed through feature based analysis. Also, by using the GA (genetic algorithm) and SVM (support vector machine) of machine learning, the performance of feature analysis is conducted. Different misalignment mode of learning data for compressor is evaluated using the fault simulator. Therefore, feature based analysis is conducted considering misalignment mode of the compressor and the possibility of a diagnosis of misalignment is evaluated.

Online Social Capital Analysis on the Yeungnam Local Presses : Website and Social Media (영남지역 언론사의 온라인 사회자본 분석 : 웹사이트와 소셜미디어를 중심으로)

  • Kim, Ji Young;Ha, Young Ji;Park, Han Woo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.73-85
    • /
    • 2013
  • This study examines the online social capital of local press using the website and social media. Moreover, the paper respectively visualizes web feature as Web 1.0 and social feature analysis as Web 2.0 by applying correspondence analysis. For data, the study analyzes 10 representative local press in Yeungnam areas. To collect the data, two coders coded web features from the websites and we employed NodeXL, an open-source software tool, for social media data. The results reveal that local websites expend online social capital using social media account. Especially, the social features of local presses attach importance to Twitter as the main press keep the well-balance use among all platforms.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Adoption of Support Vector Machine and Independent Component Analysis for Implementation of Speech Recognizer (음성인식기 구현을 위한 SVM과 독립성분분석 기법의 적용)

  • 박정원;김평환;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2164-2167
    • /
    • 2003
  • In this paper we propose effective speech recognizer through recognition experiments for three feature parameters(PCA, ICA and MFCC) using SVM(Support Vector Machine) classifier In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition result for each feature parameter and propose ICA feature as the most effective parameter

  • PDF

Decision Tree-Based Feature-Selective Neural Network Model: Case of House Price Estimation (의사결정나무를 활용한 신경망 모형의 입력특성 선택: 주택가격 추정 사례)

  • Yoon Han-Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.109-118
    • /
    • 2023
  • Data-based analysis methods have become used more for estimating or predicting housing prices, and neural network models and decision trees in the field of big data are also widely used more and more. Neural network models are often evaluated to be superior to existing statistical models in terms of estimation or prediction accuracy. However, there is ambiguity in determining the input feature of the input layer of the neural network model, that is, the type and number of input features, and decision trees are sometimes used to overcome these disadvantages. In this paper, we evaluate the existing methods of using decision trees and propose the method of using decision trees to prioritize input feature selection in neural network models. This can be a complementary or combined analysis method of the neural network model and decision tree, and the validity was confirmed by applying the proposed method to house price estimation. Through several comparisons, it has been summarized that the selection of appropriate input characteristics according to priority can increase the estimation power of the model.

FERET DATA SET에서의 PCA와 ICA의 비교

  • Kim, Sung-Soo;Moon, Hyeon-Joon;Kim, Jaihie
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2355-2358
    • /
    • 2003
  • The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.

  • PDF

Unsupervised Feature Selection Method Based on Principal Component Loading Vectors (주성분 분석 로딩 벡터 기반 비지도 변수 선택 기법)

  • Park, Young Joon;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • One of the most widely used methods for dimensionality reduction is principal component analysis (PCA). However, the reduced dimensions from PCA do not provide a clear interpretation with respect to the original features because they are linear combinations of a large number of original features. This interpretation problem can be overcome by feature selection approaches that identifying the best subset of given features. In this study, we propose an unsupervised feature selection method based on the geometrical information of PCA loading vectors. Experimental results from a simulation study demonstrated the efficiency and usefulness of the proposed method.

The Classification and Frequency Analysis in Radial Pulse (맥파의 인식상의 분류와 주파수 해석)

  • Kil, S.K.;Han, S.H.;Kwon, O.S.;Park, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.263-264
    • /
    • 1998
  • In this paper, we present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. And we analyze radial pulse in frequency domain. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also fie specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm, then we classify the shape of radial pulse by existence and position of feature points. lastly we execute frequency analysis on the feature points and get the power spectrum of radial pulse.

  • PDF

Nonlinear Feature Extraction using Class-augmented Kernel PCA (클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출)

  • Park, Myoung-Soo;Oh, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.

A Study on Face Recognition and Reliability Improvement Using Classification Analysis Technique

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2020
  • In this study, we try to find ways to recognize face recognition more stably and to improve the effectiveness and reliability of face recognition. In order to improve the face recognition rate, a lot of data must be used, but that does not necessarily mean that the recognition rate is improved. Another criterion for improving the recognition rate can be seen that the top/bottom of the recognition rate is determined depending on how accurately or precisely the degree of classification of the data to be used is made. There are various methods for classification analysis, but in this study, classification analysis is performed using a support vector machine (SVM). In this study, feature information is extracted using a normalized image with rotation information, and then projected onto the eigenspace to investigate the relationship between the feature values through the classification analysis of SVM. Verification through classification analysis can improve the effectiveness and reliability of various recognition fields such as object recognition as well as face recognition, and will be of great help in improving recognition rates.